Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Evaluasi limitnya.
Langkah 1.2.1.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.2.1.2
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Langkah 1.2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.2.3.2
Nilai eksak dari adalah .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Evaluasi limitnya.
Langkah 1.3.1.1
Pindahkan limit ke dalam logaritma.
Langkah 1.3.1.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Langkah 1.3.3.1
Nilai eksak dari adalah .
Langkah 1.3.3.2
Log alami dari adalah .
Langkah 1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Turunan dari terhadap adalah .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Susun kembali faktor-faktor dari .
Langkah 3.5
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.5.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.5.2
Turunan dari terhadap adalah .
Langkah 3.5.3
Ganti semua kemunculan dengan .
Langkah 3.6
Turunan dari terhadap adalah .
Langkah 3.7
Gabungkan dan .
Langkah 4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 5
Langkah 5.1
Kalikan dengan .
Langkah 5.2
Gabungkan dan .
Langkah 5.3
Gabungkan dan .
Langkah 5.4
Gabungkan dan .
Langkah 6
Konversikan dari ke .
Langkah 7
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 8
Pertimbangkan limit kiri.
Langkah 9
Buat tabel untuk menunjukkan sifat dari fungsi ketika mendekati dari kiri.
Langkah 10
Ketika nilai mendekati , nilai fungsinya mendekati . Jadi, limit dari ketika mendekati dari kiri adalah .
Langkah 11
Pertimbangkan limit kanan.
Langkah 12
Buat tabel untuk menunjukkan sifat dari fungsi ketika mendekati dari kanan.
Langkah 13
Ketika nilai mendekati , nilai fungsinya mendekati . Jadi, limit dari ketika mendekati dari kanan adalah .
Langkah 14
Kalikan dengan .