Kalkulus Contoh

Evaluasi Menggunakan Aturan L'Hospital limit ketika x mendekati 0 dari (arctan(x))/(sin(8x))
Langkah 1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.2
Nilai eksak dari adalah .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.3.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Kalikan dengan .
Langkah 1.3.3.2
Nilai eksak dari adalah .
Langkah 1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Turunan dari terhadap adalah .
Langkah 3.3
Susun kembali suku-suku.
Langkah 3.4
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.4.2
Turunan dari terhadap adalah .
Langkah 3.4.3
Ganti semua kemunculan dengan .
Langkah 3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.7
Kalikan dengan .
Langkah 3.8
Pindahkan ke sebelah kiri .
Langkah 3.9
Kalikan dengan .
Langkah 4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 5
Kalikan dengan .
Langkah 6
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 7
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 8
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 9
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 10
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 11
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 12
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 13
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 14
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 15
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 15.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 15.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 16
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 16.1
Gabungkan.
Langkah 16.2
Kalikan dengan .
Langkah 16.3
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 16.3.1
Kalikan dengan .
Langkah 16.3.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 16.3.3
Tambahkan dan .
Langkah 16.3.4
Kalikan dengan .
Langkah 16.3.5
Nilai eksak dari adalah .
Langkah 16.4
Kalikan dengan .