Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.2.2
Pindahkan limit ke dalam eksponen.
Langkah 1.2.3
Pindahkan limit ke dalam eksponen.
Langkah 1.2.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.2.5
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 1.2.5.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.5.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.6
Sederhanakan jawabannya.
Langkah 1.2.6.1
Sederhanakan setiap suku.
Langkah 1.2.6.1.1
Evaluasi eksponennya.
Langkah 1.2.6.1.2
Evaluasi eksponennya.
Langkah 1.2.6.1.3
Kalikan dengan .
Langkah 1.2.6.1.4
Kalikan dengan .
Langkah 1.2.6.2
Kurangi dengan .
Langkah 1.2.6.3
Kurangi dengan .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Evaluasi limitnya.
Langkah 1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.3.1.2
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.3.1.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Langkah 1.3.3.1
Sederhanakan setiap suku.
Langkah 1.3.3.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.3.3.1.2
Kalikan dengan .
Langkah 1.3.3.2
Kurangi dengan .
Langkah 1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.4
Evaluasi .
Langkah 3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.4.3
Hilangkan tanda kurung.
Langkah 3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.6
Tambahkan dan .
Langkah 3.7
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.10
Tambahkan dan .
Langkah 4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 6
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 7
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 8
Pindahkan limit ke dalam eksponen.
Langkah 9
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 10
Pindahkan limit ke dalam eksponen.
Langkah 11
Langkah 11.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 11.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 11.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 12
Langkah 12.1
Bagilah dengan .
Langkah 12.2
Sederhanakan setiap suku.
Langkah 12.2.1
Evaluasi eksponennya.
Langkah 12.2.2
Pindahkan ke sebelah kiri .
Langkah 12.2.3
Evaluasi eksponennya.
Langkah 12.2.4
Kalikan dengan .
Langkah 12.3
Terapkan sifat distributif.
Langkah 12.4
Batalkan faktor persekutuan dari .
Langkah 12.4.1
Faktorkan dari .
Langkah 12.4.2
Batalkan faktor persekutuan.
Langkah 12.4.3
Tulis kembali pernyataannya.
Langkah 12.5
Kalikan .
Langkah 12.5.1
Gabungkan dan .
Langkah 12.5.2
Gabungkan dan .
Langkah 12.6
Pindahkan tanda negatif di depan pecahan.