Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Evaluasi limitnya.
Langkah 1.2.1.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.2.1.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.2.1.3
Pindahkan limit ke dalam eksponen.
Langkah 1.2.1.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Langkah 1.2.3.1
Sederhanakan setiap suku.
Langkah 1.2.3.1.1
Apa pun yang dinaikkan ke adalah .
Langkah 1.2.3.1.2
Kalikan dengan .
Langkah 1.2.3.2
Kurangi dengan .
Langkah 1.2.3.3
Kalikan dengan .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.4
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.6
Tambahkan dan .
Langkah 3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4
Langkah 4.1
Batalkan faktor persekutuan.
Langkah 4.2
Tulis kembali pernyataannya.
Langkah 5
Karena fungsi mendekati dari kiri dan dari kanan, limitnya tidak ada.