Kalkulus Contoh

Cari Turunan Second y=(x^3-4)(5x+1)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.4
Kalikan dengan .
Langkah 1.2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.1
Tambahkan dan .
Langkah 1.2.6.2
Pindahkan ke sebelah kiri .
Langkah 1.2.7
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.10
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.10.1
Tambahkan dan .
Langkah 1.2.10.2
Pindahkan ke sebelah kiri .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Terapkan sifat distributif.
Langkah 1.3.2
Terapkan sifat distributif.
Langkah 1.3.3
Terapkan sifat distributif.
Langkah 1.3.4
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.1
Kalikan dengan .
Langkah 1.3.4.2
Kalikan dengan .
Langkah 1.3.4.3
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.3.1
Pindahkan .
Langkah 1.3.4.3.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.3.2.1
Naikkan menjadi pangkat .
Langkah 1.3.4.3.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.3.4.3.3
Tambahkan dan .
Langkah 1.3.4.4
Kalikan dengan .
Langkah 1.3.4.5
Tambahkan dan .
Langkah 1.3.5
Susun kembali suku-suku.
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Tambahkan dan .