Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Jika kontinu pada interval dan terdiferensialkan pada , maka setidaknya satu bilangan riil ada dalam interval sedemikian rupa sehingga . Teorema nilai rata-ratanya menyatakan hubungan antara gradien garis tangen dengan kurva di dan gradien garis yang melalui titik-titik dan .
Jika kontinu pada
dan jika terdiferensialkan pada ,
maka ada setidaknya satu titik, di : .
Langkah 2
Langkah 2.1
Untuk menentukan apakah fungsi tersebut kontinu pada atau tidak, tentukan domain .
Langkah 2.1.1
Atur argumen dalam agar lebih besar dari untuk menentukan di mana pernyataannya terdefinisi.
Langkah 2.1.2
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 2.2
kontinu di .
Fungsinya kontinu.
Fungsinya kontinu.
Langkah 3
Langkah 3.1
Turunan dari terhadap adalah .
Langkah 3.2
Turunan pertama dari terhadap adalah .
Langkah 4
Langkah 4.1
Untuk menentukan apakah fungsi tersebut kontinu pada atau tidak, tentukan domain .
Langkah 4.1.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 4.1.2
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 4.2
kontinu di .
Fungsinya kontinu.
Fungsinya kontinu.
Langkah 5
Fungsinya terdiferensialkan pada karena turunannya kontinu di .
Fungsinya terdiferensialkan.
Langkah 6
memenuhi kedua kondisi untuk teorema nilai rata-rata. Ini kontinu pada dan terdiferensiasi pada .
kontinu di dan terdiferensiasi di .
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Log alami dari adalah .
Langkah 7.2.2
Jawaban akhirnya adalah .
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Jawaban akhirnya adalah .
Langkah 9
Langkah 9.1
Faktorkan setiap suku.
Langkah 9.1.1
Kalikan dengan .
Langkah 9.1.2
Tambahkan dan .
Langkah 9.1.3
Kalikan dengan .
Langkah 9.1.4
Kurangi dengan .
Langkah 9.1.5
Tulis kembali sebagai .
Langkah 9.1.6
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 9.2
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Langkah 9.2.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 9.2.2
KPK dari satu dan pernyataan apa pun adalah pernyataan itu sendiri.
Langkah 9.3
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Langkah 9.3.1
Kalikan setiap suku dalam dengan .
Langkah 9.3.2
Sederhanakan sisi kirinya.
Langkah 9.3.2.1
Batalkan faktor persekutuan dari .
Langkah 9.3.2.1.1
Batalkan faktor persekutuan.
Langkah 9.3.2.1.2
Tulis kembali pernyataannya.
Langkah 9.3.3
Sederhanakan sisi kanannya.
Langkah 9.3.3.1
Susun kembali faktor-faktor dalam .
Langkah 9.4
Selesaikan persamaan.
Langkah 9.4.1
Tulis kembali persamaan tersebut sebagai .
Langkah 9.4.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 9.4.2.1
Bagilah setiap suku di dengan .
Langkah 9.4.2.2
Sederhanakan sisi kirinya.
Langkah 9.4.2.2.1
Batalkan faktor persekutuan.
Langkah 9.4.2.2.2
Bagilah dengan .
Langkah 10
Terdapat garis tangen yang ditemukan di yang sejajar dengan garis yang melalui titik-titik akhir dan .
Terdapat garis tangen pada yang sejajar dengan garis yang melalui titik-titik akhir dan
Langkah 11