Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Ganti semua kemunculan dengan .
Langkah 1.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.4
Gabungkan dan .
Langkah 1.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.6
Sederhanakan pembilangnya.
Langkah 1.6.1
Kalikan dengan .
Langkah 1.6.2
Kurangi dengan .
Langkah 1.7
Gabungkan pecahan.
Langkah 1.7.1
Pindahkan tanda negatif di depan pecahan.
Langkah 1.7.2
Gabungkan dan .
Langkah 1.7.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.8
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.11
Sederhanakan suku-suku.
Langkah 1.11.1
Tambahkan dan .
Langkah 1.11.2
Gabungkan dan .
Langkah 1.11.3
Gabungkan dan .
Langkah 1.11.4
Batalkan faktor persekutuan.
Langkah 1.11.5
Tulis kembali pernyataannya.
Langkah 2
Langkah 2.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2.2
Kalikan eksponen dalam .
Langkah 2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.2
Batalkan faktor persekutuan dari .
Langkah 2.2.2.1
Batalkan faktor persekutuan.
Langkah 2.2.2.2
Tulis kembali pernyataannya.
Langkah 2.3
Sederhanakan.
Langkah 2.4
Diferensialkan menggunakan Kaidah Pangkat.
Langkah 2.4.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.2
Kalikan dengan .
Langkah 2.5
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.5.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5.3
Ganti semua kemunculan dengan .
Langkah 2.6
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.7
Gabungkan dan .
Langkah 2.8
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.9
Sederhanakan pembilangnya.
Langkah 2.9.1
Kalikan dengan .
Langkah 2.9.2
Kurangi dengan .
Langkah 2.10
Gabungkan pecahan.
Langkah 2.10.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.10.2
Gabungkan dan .
Langkah 2.10.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.10.4
Gabungkan dan .
Langkah 2.11
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.12
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.13
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.14
Gabungkan pecahan.
Langkah 2.14.1
Tambahkan dan .
Langkah 2.14.2
Kalikan dengan .
Langkah 2.14.3
Gabungkan dan .
Langkah 2.14.4
Gabungkan dan .
Langkah 2.15
Naikkan menjadi pangkat .
Langkah 2.16
Naikkan menjadi pangkat .
Langkah 2.17
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.18
Tambahkan dan .
Langkah 2.19
Faktorkan dari .
Langkah 2.20
Batalkan faktor persekutuan.
Langkah 2.20.1
Faktorkan dari .
Langkah 2.20.2
Batalkan faktor persekutuan.
Langkah 2.20.3
Tulis kembali pernyataannya.
Langkah 2.21
Pindahkan tanda negatif di depan pecahan.
Langkah 2.22
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.23
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.24
Kalikan dengan dengan menambahkan eksponennya.
Langkah 2.24.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.24.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.24.3
Tambahkan dan .
Langkah 2.24.4
Bagilah dengan .
Langkah 2.25
Sederhanakan .
Langkah 2.26
Kurangi dengan .
Langkah 2.27
Tambahkan dan .
Langkah 2.28
Tulis kembali sebagai hasil kali.
Langkah 2.29
Kalikan dengan .
Langkah 2.30
Kalikan dengan dengan menambahkan eksponennya.
Langkah 2.30.1
Kalikan dengan .
Langkah 2.30.1.1
Naikkan menjadi pangkat .
Langkah 2.30.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.30.2
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 2.30.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.30.4
Tambahkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Ganti semua kemunculan dengan .
Langkah 4.1.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.1.4
Gabungkan dan .
Langkah 4.1.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.1.6
Sederhanakan pembilangnya.
Langkah 4.1.6.1
Kalikan dengan .
Langkah 4.1.6.2
Kurangi dengan .
Langkah 4.1.7
Gabungkan pecahan.
Langkah 4.1.7.1
Pindahkan tanda negatif di depan pecahan.
Langkah 4.1.7.2
Gabungkan dan .
Langkah 4.1.7.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 4.1.8
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.11
Sederhanakan suku-suku.
Langkah 4.1.11.1
Tambahkan dan .
Langkah 4.1.11.2
Gabungkan dan .
Langkah 4.1.11.3
Gabungkan dan .
Langkah 4.1.11.4
Batalkan faktor persekutuan.
Langkah 4.1.11.5
Tulis kembali pernyataannya.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Atur agar pembilangnya sama dengan nol.
Langkah 6
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan penyebutnya.
Langkah 9.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.2
Tambahkan dan .
Langkah 9.1.3
Tulis kembali sebagai .
Langkah 9.1.4
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 9.1.5
Batalkan faktor persekutuan dari .
Langkah 9.1.5.1
Batalkan faktor persekutuan.
Langkah 9.1.5.2
Tulis kembali pernyataannya.
Langkah 9.1.6
Naikkan menjadi pangkat .
Langkah 9.2
Hapus faktor persekutuan dari dan .
Langkah 9.2.1
Faktorkan dari .
Langkah 9.2.2
Batalkan faktor persekutuan.
Langkah 9.2.2.1
Faktorkan dari .
Langkah 9.2.2.2
Batalkan faktor persekutuan.
Langkah 9.2.2.3
Tulis kembali pernyataannya.
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 11.2.2
Tambahkan dan .
Langkah 11.2.3
Tulis kembali sebagai .
Langkah 11.2.4
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 11.2.5
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13