Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.2
Diferensialkan.
Langkah 2.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.4
Sederhanakan pernyataannya.
Langkah 2.2.4.1
Tambahkan dan .
Langkah 2.2.4.2
Kalikan dengan .
Langkah 2.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.4
Sederhanakan.
Langkah 2.4.1
Terapkan sifat distributif.
Langkah 2.4.2
Kurangi dengan .
Langkah 2.4.3
Susun kembali suku-suku.
Langkah 2.4.4
Susun kembali faktor-faktor dalam .
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.4
Kalikan dengan .
Langkah 3.3
Evaluasi .
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.4
Sederhanakan.
Langkah 3.4.1
Kurangi dengan .
Langkah 3.4.2
Susun kembali suku-suku.
Langkah 3.4.3
Susun kembali faktor-faktor dalam .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Langkah 5.1
Tentukan turunan pertamanya.
Langkah 5.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 5.1.2
Diferensialkan.
Langkah 5.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.2.4
Sederhanakan pernyataannya.
Langkah 5.1.2.4.1
Tambahkan dan .
Langkah 5.1.2.4.2
Kalikan dengan .
Langkah 5.1.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.1.4
Sederhanakan.
Langkah 5.1.4.1
Terapkan sifat distributif.
Langkah 5.1.4.2
Kurangi dengan .
Langkah 5.1.4.3
Susun kembali suku-suku.
Langkah 5.1.4.4
Susun kembali faktor-faktor dalam .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Faktorkan dari .
Langkah 6.2.1
Faktorkan dari .
Langkah 6.2.2
Faktorkan dari .
Langkah 6.2.3
Faktorkan dari .
Langkah 6.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 6.4
Atur agar sama dengan dan selesaikan .
Langkah 6.4.1
Atur sama dengan .
Langkah 6.4.2
Selesaikan untuk .
Langkah 6.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 6.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 6.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 6.5
Atur agar sama dengan dan selesaikan .
Langkah 6.5.1
Atur sama dengan .
Langkah 6.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 6.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 7
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
Kurangi dengan .
Langkah 11
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 12
Langkah 12.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 12.2
Sederhanakan hasilnya.
Langkah 12.2.1
Kurangi dengan .
Langkah 12.2.2
Pindahkan ke sebelah kiri .
Langkah 12.2.3
Tulis kembali sebagai .
Langkah 12.2.4
Jawaban akhirnya adalah .
Langkah 13
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 14