Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x)=(6-x)e^(-x)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.1.2.3
Ganti semua kemunculan dengan .
Langkah 1.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.3.1
Kalikan dengan .
Langkah 1.1.3.3.2
Pindahkan ke sebelah kiri .
Langkah 1.1.3.3.3
Tulis kembali sebagai .
Langkah 1.1.3.4
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.6
Tambahkan dan .
Langkah 1.1.3.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.9
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.9.1
Kalikan dengan .
Langkah 1.1.3.9.2
Pindahkan ke sebelah kiri .
Langkah 1.1.3.9.3
Tulis kembali sebagai .
Langkah 1.1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Terapkan sifat distributif.
Langkah 1.1.4.2
Terapkan sifat distributif.
Langkah 1.1.4.3
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1
Kalikan dengan .
Langkah 1.1.4.3.2
Kalikan dengan .
Langkah 1.1.4.3.3
Kalikan dengan .
Langkah 1.1.4.3.4
Kurangi dengan .
Langkah 1.1.4.4
Susun kembali suku-suku.
Langkah 1.1.4.5
Susun kembali faktor-faktor dalam .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Faktorkan dari .
Langkah 2.2.2
Faktorkan dari .
Langkah 2.2.3
Faktorkan dari .
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 2.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 2.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Setelah mencari titik yang membuat turunan sama dengan atau tidak terdefinisi, interval untuk memeriksa di mana meningkat dan di mana menurun yaitu .
Langkah 5
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Kalikan dengan .
Langkah 5.2.1.2
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 5.2.1.3
Gabungkan dan .
Langkah 5.2.1.4
Kalikan dengan .
Langkah 5.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 5.2.1.6
Gabungkan dan .
Langkah 5.2.1.7
Pindahkan tanda negatif di depan pecahan.
Langkah 5.2.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.2.2
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.2.1
Kurangi dengan .
Langkah 5.2.2.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Kalikan dengan .
Langkah 6.2.1.2
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.3
Gabungkan dan .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.6
Gabungkan dan .
Langkah 6.2.1.7
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 8