Masukkan soal...
Kalkulus Contoh
Langkah 1
Bagi pembilang dan penyebut dengan suku berpertumbuhan tercepat dalam penyebut.
Langkah 2
Langkah 2.1
Batalkan faktor persekutuan dari .
Langkah 2.1.1
Batalkan faktor persekutuan.
Langkah 2.1.2
Tulis kembali pernyataannya.
Langkah 2.2
Batalkan faktor persekutuan dari .
Langkah 2.2.1
Batalkan faktor persekutuan.
Langkah 2.2.2
Bagilah dengan .
Langkah 2.3
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.4
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.5
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 3
Langkah 3.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 3.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 3.1.2
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 3.1.3
Karena eksponen mendekati , jumlah mendekati .
Langkah 3.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 3.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 3.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.3.3.3
Ganti semua kemunculan dengan .
Langkah 3.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.6
Kalikan dengan .
Langkah 3.3.7
Pindahkan ke sebelah kiri .
Langkah 4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5
Langkah 5.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 5.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 5.1.2
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 5.1.3
Karena eksponen mendekati , jumlah mendekati .
Langkah 5.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 5.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 5.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 5.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 5.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 5.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 5.3.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.3.3.3
Ganti semua kemunculan dengan .
Langkah 5.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.3.6
Kalikan dengan .
Langkah 5.3.7
Pindahkan ke sebelah kiri .
Langkah 6
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 7
Karena pembilangnya mendekati bilangan riil sementara penyebutnya tidak terbatas, pecahan mendekati .
Langkah 8
Langkah 8.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 8.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 9
Langkah 9.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 9.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 9.1.2
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 9.1.3
Karena eksponen mendekati , jumlah mendekati .
Langkah 9.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 9.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 9.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 9.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 9.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 9.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 9.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 9.3.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 9.3.3.3
Ganti semua kemunculan dengan .
Langkah 9.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 9.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 9.3.6
Kalikan dengan .
Langkah 9.3.7
Pindahkan ke sebelah kiri .
Langkah 10
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 11
Karena pembilangnya mendekati bilangan riil sementara penyebutnya tidak terbatas, pecahan mendekati .
Langkah 12
Langkah 12.1
Sederhanakan pembilangnya.
Langkah 12.1.1
Kalikan .
Langkah 12.1.1.1
Kalikan dengan .
Langkah 12.1.1.2
Kalikan dengan .
Langkah 12.1.2
Kalikan dengan .
Langkah 12.1.3
Tambahkan dan .
Langkah 12.2
Sederhanakan penyebutnya.
Langkah 12.2.1
Kalikan .
Langkah 12.2.1.1
Kalikan dengan .
Langkah 12.2.1.2
Kalikan dengan .
Langkah 12.2.2
Tambahkan dan .