Kalkulus Contoh

Evaluasi Menggunakan Aturan L'Hospital limit ketika theta mendekati 0 dari (cos(theta)^2-1)/theta
Langkah 1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.2.1.2
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.2.1.3
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.2.1.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1.1
Nilai eksak dari adalah .
Langkah 1.2.3.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.2.3.1.3
Kalikan dengan .
Langkah 1.2.3.2
Kurangi dengan .
Langkah 1.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.1.3
Ganti semua kemunculan dengan .
Langkah 3.3.2
Turunan dari terhadap adalah .
Langkah 3.3.3
Kalikan dengan .
Langkah 3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5
Tambahkan dan .
Langkah 3.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4
Bagilah dengan .
Langkah 5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 6
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 7
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 8
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 9
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 9.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 10
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Nilai eksak dari adalah .
Langkah 10.2
Kalikan dengan .
Langkah 10.3
Nilai eksak dari adalah .
Langkah 10.4
Kalikan dengan .