Masukkan soal...
Kalkulus Contoh
;
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1.2
Diferensialkan.
Langkah 1.1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.3
Tambahkan dan .
Langkah 1.1.1.2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.6
Sederhanakan pernyataannya.
Langkah 1.1.1.2.6.1
Kalikan dengan .
Langkah 1.1.1.2.6.2
Pindahkan ke sebelah kiri .
Langkah 1.1.1.2.6.3
Tulis kembali sebagai .
Langkah 1.1.1.2.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.8
Sederhanakan dengan menambahkan suku-suku.
Langkah 1.1.1.2.8.1
Kalikan dengan .
Langkah 1.1.1.2.8.2
Kurangi dengan .
Langkah 1.1.2
Turunan pertama dari terhadap adalah .
Langkah 1.2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Langkah 1.2.1
Buat turunan pertamanya agar sama dengan .
Langkah 1.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 1.2.3.1
Bagilah setiap suku di dengan .
Langkah 1.2.3.2
Sederhanakan sisi kirinya.
Langkah 1.2.3.2.1
Batalkan faktor persekutuan dari .
Langkah 1.2.3.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.3.2.1.2
Bagilah dengan .
Langkah 1.2.3.3
Sederhanakan sisi kanannya.
Langkah 1.2.3.3.1
Bagilah dengan .
Langkah 1.3
Tentukan nilai saat turunannya tidak terdefinisi.
Langkah 1.3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 1.4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Langkah 1.4.1
Evaluasi pada .
Langkah 1.4.1.1
Substitusikan untuk .
Langkah 1.4.1.2
Sederhanakan.
Langkah 1.4.1.2.1
Kalikan dengan .
Langkah 1.4.1.2.2
Kurangi dengan .
Langkah 1.4.1.2.3
Kalikan dengan .
Langkah 1.4.2
Tuliskan semua titik-titiknya.
Langkah 2
Langkah 2.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 2.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 2.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 2.2.2
Sederhanakan hasilnya.
Langkah 2.2.2.1
Kalikan dengan .
Langkah 2.2.2.2
Tambahkan dan .
Langkah 2.2.2.3
Jawaban akhirnya adalah .
Langkah 2.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 2.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 2.3.2
Sederhanakan hasilnya.
Langkah 2.3.2.1
Kalikan dengan .
Langkah 2.3.2.2
Tambahkan dan .
Langkah 2.3.2.3
Jawaban akhirnya adalah .
Langkah 2.4
Karena turunan pertamanya diubah tandanya dari positif menjadi negatif di sekitar , maka adalah maksimum lokal.
adalah maksimum lokal
adalah maksimum lokal
Langkah 3
Bandingkan nilai yang ditemukan untuk setiap nilai untuk menentukan maksimum dan minimum mutlak di sepanjang interval yang diberikan. Maksimum akan terjadi pada nilai tertinggi dan minimum akan terjadi pada nilai terendah.
Maksimum Mutlak:
Tidak ada minimum mutlak
Langkah 4