Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.1.2.3
Ganti semua kemunculan dengan .
Langkah 1.1.3
Diferensialkan.
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Gabungkan pecahan.
Langkah 1.1.3.2.1
Gabungkan dan .
Langkah 1.1.3.2.2
Gabungkan dan .
Langkah 1.1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.4
Gabungkan pecahan.
Langkah 1.1.3.4.1
Kalikan dengan .
Langkah 1.1.3.4.2
Gabungkan dan .
Langkah 1.1.3.4.3
Gabungkan dan .
Langkah 1.1.4
Naikkan menjadi pangkat .
Langkah 1.1.5
Naikkan menjadi pangkat .
Langkah 1.1.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.7
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Langkah 1.1.7.1
Tambahkan dan .
Langkah 1.1.7.2
Hapus faktor persekutuan dari dan .
Langkah 1.1.7.2.1
Faktorkan dari .
Langkah 1.1.7.2.2
Batalkan faktor persekutuan.
Langkah 1.1.7.2.2.1
Faktorkan dari .
Langkah 1.1.7.2.2.2
Batalkan faktor persekutuan.
Langkah 1.1.7.2.2.3
Tulis kembali pernyataannya.
Langkah 1.1.7.3
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.9
Kalikan dengan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Langkah 2.2.1
Faktorkan dari .
Langkah 2.2.1.1
Faktorkan dari .
Langkah 2.2.1.2
Kalikan dengan .
Langkah 2.2.1.3
Faktorkan dari .
Langkah 2.2.2
Tulis kembali sebagai .
Langkah 2.2.3
Tulis kembali sebagai .
Langkah 2.2.4
Susun kembali dan .
Langkah 2.2.5
Faktorkan.
Langkah 2.2.5.1
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 2.2.5.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Langkah 2.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 2.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 2.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Selesaikan untuk .
Langkah 2.5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.5.2.2
Kalikan kedua sisi persamaan dengan .
Langkah 2.5.2.3
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 2.5.2.3.1
Sederhanakan sisi kirinya.
Langkah 2.5.2.3.1.1
Batalkan faktor persekutuan dari .
Langkah 2.5.2.3.1.1.1
Batalkan faktor persekutuan.
Langkah 2.5.2.3.1.1.2
Tulis kembali pernyataannya.
Langkah 2.5.2.3.2
Sederhanakan sisi kanannya.
Langkah 2.5.2.3.2.1
Kalikan dengan .
Langkah 2.6
Atur agar sama dengan dan selesaikan .
Langkah 2.6.1
Atur sama dengan .
Langkah 2.6.2
Selesaikan untuk .
Langkah 2.6.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.6.2.2
Kalikan kedua sisi persamaan dengan .
Langkah 2.6.2.3
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 2.6.2.3.1
Sederhanakan sisi kirinya.
Langkah 2.6.2.3.1.1
Sederhanakan .
Langkah 2.6.2.3.1.1.1
Batalkan faktor persekutuan dari .
Langkah 2.6.2.3.1.1.1.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 2.6.2.3.1.1.1.2
Faktorkan dari .
Langkah 2.6.2.3.1.1.1.3
Batalkan faktor persekutuan.
Langkah 2.6.2.3.1.1.1.4
Tulis kembali pernyataannya.
Langkah 2.6.2.3.1.1.2
Kalikan.
Langkah 2.6.2.3.1.1.2.1
Kalikan dengan .
Langkah 2.6.2.3.1.1.2.2
Kalikan dengan .
Langkah 2.6.2.3.2
Sederhanakan sisi kanannya.
Langkah 2.6.2.3.2.1
Kalikan dengan .
Langkah 2.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Langkah 3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 4
Langkah 4.1
Evaluasi pada .
Langkah 4.1.1
Substitusikan untuk .
Langkah 4.1.2
Sederhanakan.
Langkah 4.1.2.1
Naikkan menjadi pangkat .
Langkah 4.1.2.2
Hapus faktor persekutuan dari dan .
Langkah 4.1.2.2.1
Faktorkan dari .
Langkah 4.1.2.2.2
Batalkan faktor persekutuan.
Langkah 4.1.2.2.2.1
Faktorkan dari .
Langkah 4.1.2.2.2.2
Batalkan faktor persekutuan.
Langkah 4.1.2.2.2.3
Tulis kembali pernyataannya.
Langkah 4.1.2.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.1.2.4
Gabungkan dan .
Langkah 4.1.2.5
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2
Evaluasi pada .
Langkah 4.2.1
Substitusikan untuk .
Langkah 4.2.2
Sederhanakan.
Langkah 4.2.2.1
Naikkan menjadi pangkat .
Langkah 4.2.2.2
Hapus faktor persekutuan dari dan .
Langkah 4.2.2.2.1
Faktorkan dari .
Langkah 4.2.2.2.2
Batalkan faktor persekutuan.
Langkah 4.2.2.2.2.1
Faktorkan dari .
Langkah 4.2.2.2.2.2
Batalkan faktor persekutuan.
Langkah 4.2.2.2.2.3
Tulis kembali pernyataannya.
Langkah 4.2.2.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.2.2.4
Gabungkan dan .
Langkah 4.3
Tuliskan semua titik-titiknya.
Langkah 5