Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Evaluasi .
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Kalikan dengan .
Langkah 2.5
Tambahkan dan .
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4
Tambahkan dan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Langkah 5.1
Tentukan turunan pertamanya.
Langkah 5.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.1.2
Evaluasi .
Langkah 5.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.2.3
Kalikan dengan .
Langkah 5.1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.4
Evaluasi .
Langkah 5.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.4.3
Kalikan dengan .
Langkah 5.1.5
Tambahkan dan .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Tambahkan ke kedua sisi persamaan.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Karena uji turunan pertama tidak berhasil, maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 10