Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan pertamanya.
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Evaluasi .
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Kalikan dengan .
Langkah 2.1.3
Evaluasi .
Langkah 2.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.3.2
Turunan dari terhadap adalah .
Langkah 2.1.3.3
Gabungkan dan .
Langkah 2.1.3.4
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2
Turunan pertama dari terhadap adalah .
Langkah 3
Langkah 3.1
Buat turunan pertamanya agar sama dengan .
Langkah 3.2
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Langkah 3.2.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 3.2.2
KPK dari satu dan pernyataan apa pun adalah pernyataan itu sendiri.
Langkah 3.3
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Langkah 3.3.1
Kalikan setiap suku dalam dengan .
Langkah 3.3.2
Sederhanakan sisi kirinya.
Langkah 3.3.2.1
Sederhanakan setiap suku.
Langkah 3.3.2.1.1
Kalikan dengan dengan menambahkan eksponennya.
Langkah 3.3.2.1.1.1
Pindahkan .
Langkah 3.3.2.1.1.2
Kalikan dengan .
Langkah 3.3.2.1.2
Batalkan faktor persekutuan dari .
Langkah 3.3.2.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 3.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 3.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 3.3.3
Sederhanakan sisi kanannya.
Langkah 3.3.3.1
Kalikan dengan .
Langkah 3.4
Selesaikan persamaan.
Langkah 3.4.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.4.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.4.2.1
Bagilah setiap suku di dengan .
Langkah 3.4.2.2
Sederhanakan sisi kirinya.
Langkah 3.4.2.2.1
Batalkan faktor persekutuan dari .
Langkah 3.4.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.4.2.2.1.2
Bagilah dengan .
Langkah 3.4.2.3
Sederhanakan sisi kanannya.
Langkah 3.4.2.3.1
Bagilah dengan .
Langkah 3.4.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.4.4
Sederhanakan .
Langkah 3.4.4.1
Tulis kembali sebagai .
Langkah 3.4.4.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 3.4.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.4.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.4.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.4.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 5
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 7
Kecualikan interval-intervalnya yang tidak ada di dalam domainnya.
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan setiap suku.
Langkah 8.2.1.1
Kalikan dengan .
Langkah 8.2.1.2
Bagilah dengan .
Langkah 8.2.1.3
Kalikan dengan .
Langkah 8.2.2
Tambahkan dan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 9
Kecualikan interval-intervalnya yang tidak ada di dalam domainnya.
Langkah 10
Langkah 10.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2
Sederhanakan hasilnya.
Langkah 10.2.1
Sederhanakan setiap suku.
Langkah 10.2.1.1
Kalikan dengan .
Langkah 10.2.1.2
Bagilah dengan .
Langkah 10.2.1.3
Kalikan dengan .
Langkah 10.2.2
Kurangi dengan .
Langkah 10.2.3
Jawaban akhirnya adalah .
Langkah 10.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 11
Kecualikan interval-intervalnya yang tidak ada di dalam domainnya.
Langkah 12
Langkah 12.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 12.2
Sederhanakan hasilnya.
Langkah 12.2.1
Kalikan dengan .
Langkah 12.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 12.2.3
Gabungkan dan .
Langkah 12.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 12.2.5
Sederhanakan pembilangnya.
Langkah 12.2.5.1
Kalikan dengan .
Langkah 12.2.5.2
Kurangi dengan .
Langkah 12.2.6
Jawaban akhirnya adalah .
Langkah 12.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 13
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 14