Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.5
Kalikan dengan .
Langkah 1.2.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.7
Tambahkan dan .
Langkah 1.2.8
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.11
Sederhanakan pernyataannya.
Langkah 1.2.11.1
Tambahkan dan .
Langkah 1.2.11.2
Kalikan dengan .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Terapkan sifat distributif.
Langkah 1.3.2
Terapkan sifat distributif.
Langkah 1.3.3
Terapkan sifat distributif.
Langkah 1.3.4
Gabungkan suku-sukunya.
Langkah 1.3.4.1
Naikkan menjadi pangkat .
Langkah 1.3.4.2
Naikkan menjadi pangkat .
Langkah 1.3.4.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.3.4.4
Tambahkan dan .
Langkah 1.3.4.5
Kalikan dengan .
Langkah 1.3.4.6
Pindahkan ke sebelah kiri .
Langkah 1.3.4.7
Kalikan dengan .
Langkah 1.3.4.8
Tambahkan dan .
Langkah 1.3.4.9
Tambahkan dan .
Langkah 1.3.4.10
Tambahkan dan .
Langkah 1.3.4.11
Kurangi dengan .
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Tambahkan dan .
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Tambahkan dan .
Langkah 4
Karena konstan terhadap , turunan dari terhadap adalah .