Kalkulus Contoh

Tentukan Garis Singgung pada x=e f(x)=2+ log alami dari x^5 ; x=e
;
Langkah 1
Find the corresponding -value to .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Substitusikan ke dalam .
Langkah 1.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Hilangkan tanda kurung.
Langkah 1.2.2
Hilangkan tanda kurung.
Langkah 1.2.3
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1.1
Gunakan aturan logaritma untuk memindahkan keluar dari eksponen.
Langkah 1.2.3.1.2
Log alami dari adalah .
Langkah 1.2.3.1.3
Kalikan dengan .
Langkah 1.2.3.2
Tambahkan dan .
Langkah 2
Tentukan turunan pertama dan evaluasi di dan untuk menentukan gradien garis tangen.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.1.2
Turunan dari terhadap adalah .
Langkah 2.2.1.3
Ganti semua kemunculan dengan .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Gabungkan dan .
Langkah 2.2.4
Gabungkan dan .
Langkah 2.2.5
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.5.1
Faktorkan dari .
Langkah 2.2.5.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.5.2.1
Faktorkan dari .
Langkah 2.2.5.2.2
Batalkan faktor persekutuan.
Langkah 2.2.5.2.3
Tulis kembali pernyataannya.
Langkah 2.3
Tambahkan dan .
Langkah 2.4
Evaluasi turunan pada .
Langkah 3
Masukkan nilai gradien dan titik koordinat ke dalam rumus persamaan garis lurus dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 3.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 3.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1.1
Tulis kembali.
Langkah 3.3.1.2
Sederhanakan dengan menambahkan nol.
Langkah 3.3.1.3
Terapkan sifat distributif.
Langkah 3.3.1.4
Gabungkan dan .
Langkah 3.3.1.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1.5.1
Faktorkan dari .
Langkah 3.3.1.5.2
Batalkan faktor persekutuan.
Langkah 3.3.1.5.3
Tulis kembali pernyataannya.
Langkah 3.3.1.6
Kalikan dengan .
Langkah 3.3.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.3.2.2
Tambahkan dan .
Langkah 3.3.3
Susun kembali suku-suku.
Langkah 4