Kalkulus Contoh

Cari Titik-titik Beloknya 6sin(x)+sin(2x)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Turunan dari terhadap adalah .
Langkah 2.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.3.1.2
Turunan dari terhadap adalah .
Langkah 2.1.3.1.3
Ganti semua kemunculan dengan .
Langkah 2.1.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3.4
Kalikan dengan .
Langkah 2.1.3.5
Pindahkan ke sebelah kiri .
Langkah 2.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2.2
Turunan dari terhadap adalah .
Langkah 2.2.2.3
Kalikan dengan .
Langkah 2.2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.3.2.2
Turunan dari terhadap adalah .
Langkah 2.2.3.2.3
Ganti semua kemunculan dengan .
Langkah 2.2.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3.5
Kalikan dengan .
Langkah 2.2.3.6
Kalikan dengan .
Langkah 2.2.3.7
Kalikan dengan .
Langkah 2.3
Turunan kedua dari terhadap adalah .
Langkah 3
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur turunan keduanya sama dengan .
Langkah 3.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Terapkan identitas sudut ganda sinus.
Langkah 3.2.2
Kalikan dengan .
Langkah 3.3
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Faktorkan dari .
Langkah 3.3.2
Faktorkan dari .
Langkah 3.3.3
Faktorkan dari .
Langkah 3.4
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 3.5.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.1
Nilai eksak dari adalah .
Langkah 3.5.2.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 3.5.2.4
Kurangi dengan .
Langkah 3.5.2.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.5.2.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.5.2.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.5.2.5.4
Bagilah dengan .
Langkah 3.5.2.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 3.6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Atur sama dengan .
Langkah 3.6.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.6.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.2.1
Bagilah setiap suku di dengan .
Langkah 3.6.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.6.2.2.2.1.2
Bagilah dengan .
Langkah 3.6.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.2.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 3.6.2.3
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 3.6.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.4.1
Evaluasi .
Langkah 3.6.2.5
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 3.6.2.6
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.6.1
Hilangkan tanda kurung.
Langkah 3.6.2.6.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.6.2.1
Kalikan dengan .
Langkah 3.6.2.6.2.2
Kurangi dengan .
Langkah 3.6.2.7
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.2.7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 3.6.2.7.2
Ganti dengan dalam rumus untuk periode.
Langkah 3.6.2.7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 3.6.2.7.4
Bagilah dengan .
Langkah 3.6.2.8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 3.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
, untuk sebarang bilangan bulat
Langkah 3.8
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 4
Tentukan titik di mana turunan keduanya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.2
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Kalikan dengan .
Langkah 4.2.2.2
Jawaban akhirnya adalah .
Langkah 4.3
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.4
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.2.1
Kalikan dengan .
Langkah 4.4.2.2
Jawaban akhirnya adalah .
Langkah 4.5
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.6
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 5
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 6
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Kalikan dengan .
Langkah 6.2.2
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Kalikan dengan .
Langkah 7.2.2
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Kalikan dengan .
Langkah 8.2.2
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 9.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1
Kalikan dengan .
Langkah 9.2.2
Jawaban akhirnya adalah .
Langkah 9.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 10
Titik belok adalah sebuah titik pada kurva di mana kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Titik-titik belok dalam kasus ini adalah .
Langkah 11