Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal e^x-2x
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 3
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Tambahkan dan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.3.3
Kalikan dengan .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Tambahkan ke kedua sisi persamaan.
Langkah 6.3
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 6.4
Perluas sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Perluas dengan memindahkan ke luar logaritma.
Langkah 6.4.2
Log alami dari adalah .
Langkah 6.4.3
Kalikan dengan .
Langkah 7
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 11
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 12
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 12.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 12.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 12.2.1.1
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 12.2.1.2
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 12.2.1.3
Naikkan menjadi pangkat .
Langkah 12.2.2
Jawaban akhirnya adalah .
Langkah 13
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 14