Kalkulus Contoh

Tentukan Turunannya Menggunakan Aturan Rantai - d/dx J_j(theta)=-y^(j) log dari sigma(x^(j)*theta)-(1-y^(j)) log dari 1-sigma(x^(j)*theta)
Langkah 1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Turunan dari terhadap adalah .
Langkah 3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.7
Kurangi dengan .
Langkah 3.8
Gabungkan dan .
Langkah 3.9
Gabungkan dan .
Langkah 3.10
Gabungkan dan .
Langkah 3.11
Gabungkan dan .
Langkah 3.12
Kalikan dengan .
Langkah 3.13
Kalikan dengan .
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Terapkan sifat distributif.
Langkah 4.2
Kalikan dengan .
Langkah 4.3
Susun kembali suku-suku.