Kalkulus Contoh

Evaluasi Menggunakan Aturan L'Hospital limit ketika x mendekati 0 dari (sin(sin(x)))/(sin(x))
Langkah 1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.2.1.2
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Nilai eksak dari adalah .
Langkah 1.2.3.2
Nilai eksak dari adalah .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Nilai eksak dari adalah .
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Turunan dari terhadap adalah .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Turunan dari terhadap adalah .
Langkah 3.4
Susun kembali faktor-faktor dari .
Langkah 3.5
Turunan dari terhadap adalah .
Langkah 4
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Batalkan faktor persekutuan.
Langkah 4.1.2
Bagilah dengan .
Langkah 4.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 4.3
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 5
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 6
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Nilai eksak dari adalah .
Langkah 6.2
Nilai eksak dari adalah .