Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Evaluasi limitnya.
Langkah 1.2.1.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.2.1.2
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Langkah 1.2.3.1
Nilai eksak dari adalah .
Langkah 1.2.3.2
Nilai eksak dari adalah .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Nilai eksak dari adalah .
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Turunan dari terhadap adalah .
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Turunan dari terhadap adalah .
Langkah 3.4
Susun kembali faktor-faktor dari .
Langkah 3.5
Turunan dari terhadap adalah .
Langkah 4
Langkah 4.1
Batalkan faktor persekutuan dari .
Langkah 4.1.1
Batalkan faktor persekutuan.
Langkah 4.1.2
Bagilah dengan .
Langkah 4.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 4.3
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 5
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 6
Langkah 6.1
Nilai eksak dari adalah .
Langkah 6.2
Nilai eksak dari adalah .