Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan pertamanya.
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Evaluasi .
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Kalikan dengan .
Langkah 2.1.3
Evaluasi .
Langkah 2.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3.3
Kalikan dengan .
Langkah 2.1.4
Evaluasi .
Langkah 2.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.4.3
Kalikan dengan .
Langkah 2.2
Turunan pertama dari terhadap adalah .
Langkah 3
Langkah 3.1
Buat turunan pertamanya agar sama dengan .
Langkah 3.2
Faktorkan sisi kiri persamaannya.
Langkah 3.2.1
Faktorkan dari .
Langkah 3.2.1.1
Faktorkan dari .
Langkah 3.2.1.2
Faktorkan dari .
Langkah 3.2.1.3
Faktorkan dari .
Langkah 3.2.1.4
Faktorkan dari .
Langkah 3.2.1.5
Faktorkan dari .
Langkah 3.2.2
Faktorkan menggunakan aturan kuadrat sempurna.
Langkah 3.2.2.1
Tulis kembali sebagai .
Langkah 3.2.2.2
Periksa apakah suku tengahnya merupakan dua kali hasil perkalian dari bilangan yang dikuadratkan di suku pertama dan suku ketiga.
Langkah 3.2.2.3
Tulis kembali polinomialnya.
Langkah 3.2.2.4
Faktorkan menggunakan aturan trinomial kuadrat sempurna , di mana dan .
Langkah 3.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.4
Atur agar sama dengan dan selesaikan .
Langkah 3.4.1
Atur sama dengan .
Langkah 3.4.2
Selesaikan untuk .
Langkah 3.4.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.4.2.2
Sederhanakan .
Langkah 3.4.2.2.1
Tulis kembali sebagai .
Langkah 3.4.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 3.4.2.2.3
Tambah atau kurang adalah .
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Selesaikan untuk .
Langkah 3.5.2.1
Atur agar sama dengan .
Langkah 3.5.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 5
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.1.5
Naikkan menjadi pangkat .
Langkah 6.2.1.6
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan menambahkan bilangan.
Langkah 6.2.2.1
Tambahkan dan .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan setiap suku.
Langkah 7.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 7.2.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.1.4
Batalkan faktor persekutuan dari .
Langkah 7.2.1.4.1
Faktorkan dari .
Langkah 7.2.1.4.2
Faktorkan dari .
Langkah 7.2.1.4.3
Batalkan faktor persekutuan.
Langkah 7.2.1.4.4
Tulis kembali pernyataannya.
Langkah 7.2.1.5
Gabungkan dan .
Langkah 7.2.1.6
Terapkan kaidah hasil kali ke .
Langkah 7.2.1.7
Satu dipangkat berapa pun sama dengan satu.
Langkah 7.2.1.8
Naikkan menjadi pangkat .
Langkah 7.2.1.9
Batalkan faktor persekutuan dari .
Langkah 7.2.1.9.1
Faktorkan dari .
Langkah 7.2.1.9.2
Faktorkan dari .
Langkah 7.2.1.9.3
Batalkan faktor persekutuan.
Langkah 7.2.1.9.4
Tulis kembali pernyataannya.
Langkah 7.2.1.10
Gabungkan dan .
Langkah 7.2.1.11
Pindahkan tanda negatif di depan pecahan.
Langkah 7.2.1.12
Terapkan kaidah hasil kali ke .
Langkah 7.2.1.13
Satu dipangkat berapa pun sama dengan satu.
Langkah 7.2.1.14
Naikkan menjadi pangkat .
Langkah 7.2.1.15
Batalkan faktor persekutuan dari .
Langkah 7.2.1.15.1
Faktorkan dari .
Langkah 7.2.1.15.2
Faktorkan dari .
Langkah 7.2.1.15.3
Batalkan faktor persekutuan.
Langkah 7.2.1.15.4
Tulis kembali pernyataannya.
Langkah 7.2.1.16
Gabungkan dan .
Langkah 7.2.2
Gabungkan pecahan.
Langkah 7.2.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.2.2.2
Sederhanakan pernyataannya.
Langkah 7.2.2.2.1
Tambahkan dan .
Langkah 7.2.2.2.2
Bagilah dengan .
Langkah 7.2.2.2.3
Tambahkan dan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan setiap suku.
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.1.5
Naikkan menjadi pangkat .
Langkah 8.2.1.6
Kalikan dengan .
Langkah 8.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 8.2.2.1
Kurangi dengan .
Langkah 8.2.2.2
Tambahkan dan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Langkah 10