Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Turunan dari terhadap adalah .
Langkah 1.2
Susun kembali faktor-faktor dari .
Langkah 2
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Turunan dari terhadap adalah .
Langkah 2.4
Naikkan menjadi pangkat .
Langkah 2.5
Naikkan menjadi pangkat .
Langkah 2.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7
Tambahkan dan .
Langkah 2.8
Turunan dari terhadap adalah .
Langkah 2.9
Naikkan menjadi pangkat .
Langkah 2.10
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.11
Tambahkan dan .
Langkah 2.12
Sederhanakan.
Langkah 2.12.1
Terapkan sifat distributif.
Langkah 2.12.2
Gabungkan suku-sukunya.
Langkah 2.12.2.1
Kalikan dengan .
Langkah 2.12.2.2
Kalikan dengan .
Langkah 2.12.2.3
Kalikan dengan .
Langkah 2.12.2.4
Kalikan dengan .
Langkah 2.12.3
Susun kembali suku-suku.
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Langkah 5.2.1
Ambil kotangen balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kotangen.
Langkah 5.2.2
Sederhanakan sisi kanannya.
Langkah 5.2.2.1
Nilai eksak dari adalah .
Langkah 5.2.3
Fungsi kotangen positif di kuadran pertama dan ketiga. Untuk mencari penyelesaian kedua, tambahkan sudut acuan dari untuk mencari penyelesaian di kuadran keempat.
Langkah 5.2.4
Sederhanakan .
Langkah 5.2.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.4.2
Gabungkan pecahan.
Langkah 5.2.4.2.1
Gabungkan dan .
Langkah 5.2.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.4.3
Sederhanakan pembilangnya.
Langkah 5.2.4.3.1
Pindahkan ke sebelah kiri .
Langkah 5.2.4.3.2
Tambahkan dan .
Langkah 5.2.5
Penyelesaian untuk persamaan .
Langkah 6
Langkah 6.1
Atur sama dengan .
Langkah 6.2
Jangkauan dari kosekan adalah dan . Karena tidak berada pada jangkauan ini, maka tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan setiap suku.
Langkah 9.1.1
Nilai eksak dari adalah .
Langkah 9.1.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.3
Nilai eksak dari adalah .
Langkah 9.1.4
Kalikan dengan .
Langkah 9.1.5
Nilai eksak dari adalah .
Langkah 9.1.6
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.2
Tambahkan dan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Nilai eksak dari adalah .
Langkah 11.2.2
Jawaban akhirnya adalah .
Langkah 12
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 13
Langkah 13.1
Sederhanakan setiap suku.
Langkah 13.1.1
Terapkan sudut acuan dengan menentukan sudut dengan nilai trigonometri yang setara di kuadran pertama. Buat pernyataan negatif karena kotangen negatif di kuadran keempat.
Langkah 13.1.2
Nilai eksak dari adalah .
Langkah 13.1.3
Kalikan dengan .
Langkah 13.1.4
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 13.1.5
Terapkan sudut acuan dengan menentukan sudut dengan nilai trigonometri yang setara di kuadran pertama. Buat pernyataan negatif karena kosekan negatif di kuadran keempat.
Langkah 13.1.6
Nilai eksak dari adalah .
Langkah 13.1.7
Kalikan .
Langkah 13.1.7.1
Kalikan dengan .
Langkah 13.1.7.2
Kalikan dengan .
Langkah 13.1.8
Terapkan sudut acuan dengan menentukan sudut dengan nilai trigonometri yang setara di kuadran pertama. Buat pernyataan negatif karena kosekan negatif di kuadran keempat.
Langkah 13.1.9
Nilai eksak dari adalah .
Langkah 13.1.10
Kalikan dengan .
Langkah 13.1.11
Naikkan menjadi pangkat .
Langkah 13.2
Kurangi dengan .
Langkah 14
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 15
Langkah 15.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 15.2
Sederhanakan hasilnya.
Langkah 15.2.1
Terapkan sudut acuan dengan menentukan sudut dengan nilai trigonometri yang setara di kuadran pertama. Buat pernyataan negatif karena kosekan negatif di kuadran keempat.
Langkah 15.2.2
Nilai eksak dari adalah .
Langkah 15.2.3
Kalikan dengan .
Langkah 15.2.4
Jawaban akhirnya adalah .
Langkah 16
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
adalah maksimum lokal
Langkah 17