Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.5
Gabungkan dan .
Langkah 1.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.7
Sederhanakan pembilangnya.
Langkah 1.7.1
Kalikan dengan .
Langkah 1.7.2
Kurangi dengan .
Langkah 1.8
Pindahkan tanda negatif di depan pecahan.
Langkah 1.9
Gabungkan dan .
Langkah 1.10
Gabungkan dan .
Langkah 1.11
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.12
Batalkan faktor persekutuan.
Langkah 1.13
Tulis kembali pernyataannya.
Langkah 2
Langkah 2.1
Terapkan aturan-aturan dasar eksponen.
Langkah 2.1.1
Tulis kembali sebagai .
Langkah 2.1.2
Kalikan eksponen dalam .
Langkah 2.1.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.1.2.2
Kalikan .
Langkah 2.1.2.2.1
Gabungkan dan .
Langkah 2.1.2.2.2
Kalikan dengan .
Langkah 2.1.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.4
Gabungkan dan .
Langkah 2.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.6
Sederhanakan pembilangnya.
Langkah 2.6.1
Kalikan dengan .
Langkah 2.6.2
Kurangi dengan .
Langkah 2.7
Pindahkan tanda negatif di depan pecahan.
Langkah 2.8
Sederhanakan.
Langkah 2.8.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.8.2
Gabungkan suku-sukunya.
Langkah 2.8.2.1
Kalikan dengan .
Langkah 2.8.2.2
Pindahkan ke sebelah kiri .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.1.5
Gabungkan dan .
Langkah 4.1.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.1.7
Sederhanakan pembilangnya.
Langkah 4.1.7.1
Kalikan dengan .
Langkah 4.1.7.2
Kurangi dengan .
Langkah 4.1.8
Pindahkan tanda negatif di depan pecahan.
Langkah 4.1.9
Gabungkan dan .
Langkah 4.1.10
Gabungkan dan .
Langkah 4.1.11
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 4.1.12
Batalkan faktor persekutuan.
Langkah 4.1.13
Tulis kembali pernyataannya.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Atur agar pembilangnya sama dengan nol.
Langkah 5.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 6
Langkah 6.1
Gunakan rumus untuk menulis kembali eksponensiasi ke dalam bentuk akar.
Langkah 6.2
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.3
Selesaikan .
Langkah 6.3.1
Untuk menghapus akar di sisi kiri persamaan, pangkatkan kedua sisi persamaan ke pangkat .
Langkah 6.3.2
Sederhanakan setiap sisi persamaan tersebut.
Langkah 6.3.2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 6.3.2.2
Sederhanakan sisi kirinya.
Langkah 6.3.2.2.1
Kalikan eksponen dalam .
Langkah 6.3.2.2.1.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 6.3.2.2.1.2
Batalkan faktor persekutuan dari .
Langkah 6.3.2.2.1.2.1
Batalkan faktor persekutuan.
Langkah 6.3.2.2.1.2.2
Tulis kembali pernyataannya.
Langkah 6.3.2.3
Sederhanakan sisi kanannya.
Langkah 6.3.2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.3.3
Selesaikan .
Langkah 6.3.3.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 6.3.3.2
Sederhanakan .
Langkah 6.3.3.2.1
Tulis kembali sebagai .
Langkah 6.3.3.2.2
Tarik suku-suku keluar dari bawah akar, dengan asumsi bilangan-bilangan riil.
Langkah 6.4
Atur bilangan di bawah akar dalam agar lebih kecil dari untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.5
Selesaikan .
Langkah 6.5.1
Ambil akar yang ditentukan dari kedua sisi pertidaksamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 6.5.2
Sederhanakan persamaannya.
Langkah 6.5.2.1
Sederhanakan sisi kirinya.
Langkah 6.5.2.1.1
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.5.2.2
Sederhanakan sisi kanannya.
Langkah 6.5.2.2.1
Sederhanakan .
Langkah 6.5.2.2.1.1
Tulis kembali sebagai .
Langkah 6.5.2.2.1.2
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.6
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan pernyataannya.
Langkah 9.1.1
Tulis kembali sebagai .
Langkah 9.1.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 9.2
Batalkan faktor persekutuan dari .
Langkah 9.2.1
Batalkan faktor persekutuan.
Langkah 9.2.2
Tulis kembali pernyataannya.
Langkah 9.3
Sederhanakan pernyataannya.
Langkah 9.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.3.2
Kalikan dengan .
Langkah 9.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 9.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Langkah 10
Karena uji turunan pertama tidak berhasil, maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 11