Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Faktorkan dari .
Langkah 2.1.1
Faktorkan dari .
Langkah 2.1.2
Faktorkan dari .
Langkah 2.1.3
Faktorkan dari .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5
Tambahkan dan .
Langkah 2.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.8
Gabungkan pecahan.
Langkah 2.8.1
Kalikan dengan .
Langkah 2.8.2
Gabungkan dan .
Langkah 2.8.3
Sederhanakan pernyataannya.
Langkah 2.8.3.1
Kalikan dengan .
Langkah 2.8.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Karena tidak ada nilai dari yang membuat turunan pertama sama dengan , maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 6
Tidak Ada Ekstrem Lokal
Langkah 7