Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Diferensialkan.
Langkah 2.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.4
Tambahkan dan .
Langkah 2.1.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.6
Kalikan dengan .
Langkah 2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Diferensialkan.
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Kalikan dengan .
Langkah 2.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.4
Kalikan dengan .
Langkah 3
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3
Diferensialkan.
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Kalikan dengan .
Langkah 3.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.4
Kalikan dengan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Karena tidak ada nilai dari yang membuat turunan pertama sama dengan , maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 6
Tidak Ada Ekstrem Lokal
Langkah 7