Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal y=5200x-40000+100x+x^3
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Kalikan dengan .
Langkah 2.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1.1
Tambahkan dan .
Langkah 2.6.1.2
Tambahkan dan .
Langkah 2.6.2
Susun kembali suku-suku.
Langkah 3
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Tambahkan dan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Karena tidak ada nilai dari yang membuat turunan pertama sama dengan , maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 6
Tidak Ada Ekstrem Lokal
Langkah 7