Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Diferensialkan.
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.2.1.3
Ganti semua kemunculan dengan .
Langkah 2.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.4
Kalikan dengan .
Langkah 2.2.5
Pindahkan ke sebelah kiri .
Langkah 3
Langkah 3.1
Diferensialkan.
Langkah 3.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.2.2.3
Ganti semua kemunculan dengan .
Langkah 3.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.5
Kalikan dengan .
Langkah 3.2.6
Pindahkan ke sebelah kiri .
Langkah 3.2.7
Kalikan dengan .
Langkah 3.3
Tambahkan dan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Langkah 5.1
Tentukan turunan pertamanya.
Langkah 5.1.1
Diferensialkan.
Langkah 5.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.2
Evaluasi .
Langkah 5.1.2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 5.1.2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 5.1.2.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.1.2.1.3
Ganti semua kemunculan dengan .
Langkah 5.1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.2.4
Kalikan dengan .
Langkah 5.1.2.5
Pindahkan ke sebelah kiri .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 6.3.1
Bagilah setiap suku di dengan .
Langkah 6.3.2
Sederhanakan sisi kirinya.
Langkah 6.3.2.1
Batalkan faktor persekutuan dari .
Langkah 6.3.2.1.1
Batalkan faktor persekutuan.
Langkah 6.3.2.1.2
Bagilah dengan .
Langkah 6.3.3
Sederhanakan sisi kanannya.
Langkah 6.3.3.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 6.4
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 6.5
Perluas sisi kirinya.
Langkah 6.5.1
Perluas dengan memindahkan ke luar logaritma.
Langkah 6.5.2
Log alami dari adalah .
Langkah 6.5.3
Kalikan dengan .
Langkah 6.6
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 6.6.1
Bagilah setiap suku di dengan .
Langkah 6.6.2
Sederhanakan sisi kirinya.
Langkah 6.6.2.1
Batalkan faktor persekutuan dari .
Langkah 6.6.2.1.1
Batalkan faktor persekutuan.
Langkah 6.6.2.1.2
Bagilah dengan .
Langkah 6.6.3
Sederhanakan sisi kanannya.
Langkah 6.6.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 7
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
Langkah 10.1
Batalkan faktor persekutuan dari .
Langkah 10.1.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 10.1.2
Faktorkan dari .
Langkah 10.1.3
Batalkan faktor persekutuan.
Langkah 10.1.4
Tulis kembali pernyataannya.
Langkah 10.2
Kalikan.
Langkah 10.2.1
Kalikan dengan .
Langkah 10.2.2
Kalikan dengan .
Langkah 10.3
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 10.4
Batalkan faktor persekutuan dari .
Langkah 10.4.1
Faktorkan dari .
Langkah 10.4.2
Batalkan faktor persekutuan.
Langkah 10.4.3
Tulis kembali pernyataannya.
Langkah 11
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 12
Langkah 12.1
Simplify to substitute in .
Langkah 12.1.1
Tulis kembali sebagai .
Langkah 12.1.2
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 12.1.3
Terapkan kaidah hasil kali ke .
Langkah 12.1.4
Satu dipangkat berapa pun sama dengan satu.
Langkah 12.2
Ganti variabel dengan pada pernyataan tersebut.
Langkah 12.3
Sederhanakan hasilnya.
Langkah 12.3.1
Sederhanakan setiap suku.
Langkah 12.3.1.1
Kalikan .
Langkah 12.3.1.1.1
Kalikan dengan .
Langkah 12.3.1.1.2
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 12.3.1.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 12.3.1.3
Terapkan kaidah hasil kali ke .
Langkah 12.3.1.4
Satu dipangkat berapa pun sama dengan satu.
Langkah 12.3.1.5
Sederhanakan penyebutnya.
Langkah 12.3.1.5.1
Kalikan eksponen dalam .
Langkah 12.3.1.5.1.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 12.3.1.5.1.2
Batalkan faktor persekutuan dari .
Langkah 12.3.1.5.1.2.1
Batalkan faktor persekutuan.
Langkah 12.3.1.5.1.2.2
Tulis kembali pernyataannya.
Langkah 12.3.1.5.2
Evaluasi eksponennya.
Langkah 12.3.2
Jawaban akhirnya adalah .
Langkah 13
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 14