Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=x^6(x-3)^5
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Ganti semua kemunculan dengan .
Langkah 1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.1
Tambahkan dan .
Langkah 1.3.4.2
Kalikan dengan .
Langkah 1.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.6
Pindahkan ke sebelah kiri .
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.1
Faktorkan dari .
Langkah 1.4.1.2
Faktorkan dari .
Langkah 1.4.1.3
Faktorkan dari .
Langkah 1.4.2
Pindahkan ke sebelah kiri .
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Sederhanakan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1.1
Terapkan sifat distributif.
Langkah 2.1.1.2
Kalikan dengan .
Langkah 2.1.2
Tambahkan dan .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.4
Kalikan dengan .
Langkah 2.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.6.1
Tambahkan dan .
Langkah 2.3.6.2
Pindahkan ke sebelah kiri .
Langkah 2.4
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.5
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5.3
Ganti semua kemunculan dengan .
Langkah 2.6
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.6.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.6.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.6.4
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.4.1
Tambahkan dan .
Langkah 2.6.4.2
Kalikan dengan .
Langkah 2.6.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.6.6
Pindahkan ke sebelah kiri .
Langkah 2.7
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.1.1
Faktorkan dari .
Langkah 2.7.1.2
Faktorkan dari .
Langkah 2.7.1.3
Faktorkan dari .
Langkah 2.7.2
Kalikan dengan .
Langkah 2.7.3
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.1
Gunakan Teorema Binomial.
Langkah 2.7.3.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.2.1
Kalikan dengan .
Langkah 2.7.3.2.2
Naikkan menjadi pangkat .
Langkah 2.7.3.2.3
Kalikan dengan .
Langkah 2.7.3.2.4
Naikkan menjadi pangkat .
Langkah 2.7.3.2.5
Kalikan dengan .
Langkah 2.7.3.2.6
Naikkan menjadi pangkat .
Langkah 2.7.3.3
Terapkan sifat distributif.
Langkah 2.7.3.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.4.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.4.1.1
Pindahkan .
Langkah 2.7.3.4.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.4.1.3
Tambahkan dan .
Langkah 2.7.3.4.2
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.4.3
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.4.4
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.4.5
Kalikan dengan .
Langkah 2.7.3.5
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.5.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.5.1.1
Pindahkan .
Langkah 2.7.3.5.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.5.1.3
Tambahkan dan .
Langkah 2.7.3.5.2
Kalikan dengan .
Langkah 2.7.3.5.3
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.5.3.1
Pindahkan .
Langkah 2.7.3.5.3.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.5.3.3
Tambahkan dan .
Langkah 2.7.3.5.4
Kalikan dengan .
Langkah 2.7.3.5.5
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.5.5.1
Pindahkan .
Langkah 2.7.3.5.5.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.5.5.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.5.5.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.5.5.3
Tambahkan dan .
Langkah 2.7.3.5.6
Kalikan dengan .
Langkah 2.7.3.6
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.6.2
Gunakan Teorema Binomial.
Langkah 2.7.3.6.3
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.3.1
Kalikan dengan .
Langkah 2.7.3.6.3.2
Naikkan menjadi pangkat .
Langkah 2.7.3.6.3.3
Kalikan dengan .
Langkah 2.7.3.6.3.4
Naikkan menjadi pangkat .
Langkah 2.7.3.6.4
Terapkan sifat distributif.
Langkah 2.7.3.6.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.5.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.5.1.1
Pindahkan .
Langkah 2.7.3.6.5.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.6.5.1.3
Tambahkan dan .
Langkah 2.7.3.6.5.2
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.6.5.3
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.6.5.4
Kalikan dengan .
Langkah 2.7.3.6.6
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.6.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.6.1.1
Pindahkan .
Langkah 2.7.3.6.6.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.6.6.1.3
Tambahkan dan .
Langkah 2.7.3.6.6.2
Kalikan dengan .
Langkah 2.7.3.6.6.3
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.6.3.1
Pindahkan .
Langkah 2.7.3.6.6.3.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.6.3.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.6.6.3.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.6.6.3.3
Tambahkan dan .
Langkah 2.7.3.6.6.4
Kalikan dengan .
Langkah 2.7.3.6.7
Gunakan Teorema Binomial.
Langkah 2.7.3.6.8
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.8.1
Kalikan dengan .
Langkah 2.7.3.6.8.2
Naikkan menjadi pangkat .
Langkah 2.7.3.6.8.3
Kalikan dengan .
Langkah 2.7.3.6.8.4
Naikkan menjadi pangkat .
Langkah 2.7.3.6.8.5
Kalikan dengan .
Langkah 2.7.3.6.8.6
Naikkan menjadi pangkat .
Langkah 2.7.3.6.9
Terapkan sifat distributif.
Langkah 2.7.3.6.10
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.10.1
Kalikan dengan .
Langkah 2.7.3.6.10.2
Kalikan dengan .
Langkah 2.7.3.6.10.3
Kalikan dengan .
Langkah 2.7.3.6.10.4
Kalikan dengan .
Langkah 2.7.3.6.11
Terapkan sifat distributif.
Langkah 2.7.3.6.12
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.12.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.12.1.1
Pindahkan .
Langkah 2.7.3.6.12.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.6.12.1.3
Tambahkan dan .
Langkah 2.7.3.6.12.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.12.2.1
Pindahkan .
Langkah 2.7.3.6.12.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.6.12.2.3
Tambahkan dan .
Langkah 2.7.3.6.12.3
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.12.3.1
Pindahkan .
Langkah 2.7.3.6.12.3.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.6.12.3.3
Tambahkan dan .
Langkah 2.7.3.6.12.4
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.12.4.1
Pindahkan .
Langkah 2.7.3.6.12.4.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.6.12.4.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.6.12.4.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.6.12.4.3
Tambahkan dan .
Langkah 2.7.3.7
Tambahkan dan .
Langkah 2.7.3.8
Kurangi dengan .
Langkah 2.7.3.9
Tambahkan dan .
Langkah 2.7.3.10
Kurangi dengan .
Langkah 2.7.3.11
Perluas dengan mengalikan setiap suku dalam pernyataan pertama dengan setiap suku dalam pernyataan kedua.
Langkah 2.7.3.12
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.12.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.2.1
Pindahkan .
Langkah 2.7.3.12.2.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.2.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.12.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.12.2.3
Tambahkan dan .
Langkah 2.7.3.12.3
Kalikan dengan .
Langkah 2.7.3.12.4
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.12.5
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.5.1
Pindahkan .
Langkah 2.7.3.12.5.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.5.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.12.5.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.12.5.3
Tambahkan dan .
Langkah 2.7.3.12.6
Kalikan dengan .
Langkah 2.7.3.12.7
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.12.8
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.8.1
Pindahkan .
Langkah 2.7.3.12.8.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.8.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.12.8.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.12.8.3
Tambahkan dan .
Langkah 2.7.3.12.9
Kalikan dengan .
Langkah 2.7.3.12.10
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.12.11
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.11.1
Pindahkan .
Langkah 2.7.3.12.11.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.11.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.12.11.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.12.11.3
Tambahkan dan .
Langkah 2.7.3.12.12
Kalikan dengan .
Langkah 2.7.3.12.13
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 2.7.3.12.14
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.14.1
Pindahkan .
Langkah 2.7.3.12.14.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.7.3.12.14.2.1
Naikkan menjadi pangkat .
Langkah 2.7.3.12.14.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7.3.12.14.3
Tambahkan dan .
Langkah 2.7.3.12.15
Kalikan dengan .
Langkah 2.7.3.12.16
Kalikan dengan .
Langkah 2.7.3.12.17
Kalikan dengan .
Langkah 2.7.3.12.18
Kalikan dengan .
Langkah 2.7.3.12.19
Kalikan dengan .
Langkah 2.7.3.12.20
Kalikan dengan .
Langkah 2.7.3.13
Kurangi dengan .
Langkah 2.7.3.14
Tambahkan dan .
Langkah 2.7.3.15
Kurangi dengan .
Langkah 2.7.3.16
Tambahkan dan .
Langkah 2.7.4
Tambahkan dan .
Langkah 2.7.5
Kurangi dengan .
Langkah 2.7.6
Tambahkan dan .
Langkah 2.7.7
Kurangi dengan .
Langkah 2.7.8
Tambahkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Ganti semua kemunculan dengan .
Langkah 4.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.4
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.4.1
Tambahkan dan .
Langkah 4.1.3.4.2
Kalikan dengan .
Langkah 4.1.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.6
Pindahkan ke sebelah kiri .
Langkah 4.1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.4.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.4.1.1
Faktorkan dari .
Langkah 4.1.4.1.2
Faktorkan dari .
Langkah 4.1.4.1.3
Faktorkan dari .
Langkah 4.1.4.2
Pindahkan ke sebelah kiri .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5.3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Atur sama dengan .
Langkah 5.3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 5.3.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.2.1
Tulis kembali sebagai .
Langkah 5.3.2.2.2
Tarik suku-suku keluar dari bawah akar, dengan asumsi bilangan-bilangan riil.
Langkah 5.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Atur sama dengan .
Langkah 5.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1
Atur agar sama dengan .
Langkah 5.4.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 5.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Atur sama dengan .
Langkah 5.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.1.1.1
Terapkan sifat distributif.
Langkah 5.5.2.1.1.2
Kalikan dengan .
Langkah 5.5.2.1.2
Tambahkan dan .
Langkah 5.5.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 5.5.2.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.3.1
Bagilah setiap suku di dengan .
Langkah 5.5.2.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.3.2.1.1
Batalkan faktor persekutuan.
Langkah 5.5.2.3.2.1.2
Bagilah dengan .
Langkah 5.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.2
Kalikan dengan .
Langkah 9.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.4
Kalikan dengan .
Langkah 9.1.5
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.6
Kalikan dengan .
Langkah 9.1.7
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.8
Kalikan dengan .
Langkah 9.1.9
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.10
Kalikan dengan .
Langkah 9.1.11
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.12
Kalikan dengan .
Langkah 9.2
Sederhanakan dengan menambahkan bilangan.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1
Tambahkan dan .
Langkah 9.2.2
Tambahkan dan .
Langkah 9.2.3
Tambahkan dan .
Langkah 9.2.4
Tambahkan dan .
Langkah 9.2.5
Tambahkan dan .
Langkah 10
Karena setidaknya ada satu titik di atau turunan kedua yang tidak terdefinisikan, lakukan uji turunan pertama.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 10.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.1
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.1.1
Naikkan menjadi pangkat .
Langkah 10.2.2.1.2
Kurangi dengan .
Langkah 10.2.2.1.3
Naikkan menjadi pangkat .
Langkah 10.2.2.1.4
Kalikan dengan .
Langkah 10.2.2.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.2.1
Kalikan dengan .
Langkah 10.2.2.2.2
Kurangi dengan .
Langkah 10.2.2.2.3
Kalikan dengan .
Langkah 10.2.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.3.1
Kurangi dengan .
Langkah 10.2.2.3.2
Kalikan dengan .
Langkah 10.2.2.4
Jawaban akhirnya adalah .
Langkah 10.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.1
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 10.3.2.1.2
Kalikan dengan .
Langkah 10.3.2.1.3
Kurangi dengan .
Langkah 10.3.2.1.4
Naikkan menjadi pangkat .
Langkah 10.3.2.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.2.1
Kalikan dengan .
Langkah 10.3.2.2.2
Kurangi dengan .
Langkah 10.3.2.2.3
Kalikan dengan .
Langkah 10.3.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.3.1
Kurangi dengan .
Langkah 10.3.2.3.2
Kalikan dengan .
Langkah 10.3.2.4
Jawaban akhirnya adalah .
Langkah 10.4
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.1
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.1.1
Naikkan menjadi pangkat .
Langkah 10.4.2.1.2
Kurangi dengan .
Langkah 10.4.2.1.3
Naikkan menjadi pangkat .
Langkah 10.4.2.1.4
Kalikan dengan .
Langkah 10.4.2.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.2.1
Kalikan dengan .
Langkah 10.4.2.2.2
Kurangi dengan .
Langkah 10.4.2.2.3
Kalikan dengan .
Langkah 10.4.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.3.1
Kurangi dengan .
Langkah 10.4.2.3.2
Kalikan dengan .
Langkah 10.4.2.4
Jawaban akhirnya adalah .
Langkah 10.5
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.5.2.1
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.5.2.1.1
Naikkan menjadi pangkat .
Langkah 10.5.2.1.2
Kurangi dengan .
Langkah 10.5.2.1.3
Naikkan menjadi pangkat .
Langkah 10.5.2.1.4
Kalikan dengan .
Langkah 10.5.2.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.5.2.2.1
Kalikan dengan .
Langkah 10.5.2.2.2
Kurangi dengan .
Langkah 10.5.2.2.3
Kalikan dengan .
Langkah 10.5.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.5.2.3.1
Tambahkan dan .
Langkah 10.5.2.3.2
Kalikan dengan .
Langkah 10.5.2.4
Jawaban akhirnya adalah .
Langkah 10.6
Karena turunan pertamanya diubah tandanya dari positif menjadi negatif di sekitar , maka adalah maksimum lokal.
adalah maksimum lokal
Langkah 10.7
Karena turunan pertamanya diubah tandanya dari negatif menjadi positif di sekitar , maka adalah minimum lokal.
adalah minimum lokal
Langkah 10.8
Karena turunan pertamanya tidak mengubah tanda-tanda di sekitar , ini bukan merupakan maksimum atau minimum lokal.
Bukan maksimum atau minimum lokal
Langkah 10.9
Ini adalah ekstrem lokal untuk .
adalah maksimum lokal
adalah minimum lokal
adalah maksimum lokal
adalah minimum lokal
Langkah 11