Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=8cos(x)^4
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Ganti semua kemunculan dengan .
Langkah 1.3
Kalikan dengan .
Langkah 1.4
Turunan dari terhadap adalah .
Langkah 1.5
Kalikan dengan .
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Turunan dari terhadap adalah .
Langkah 2.4
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1.1
Naikkan menjadi pangkat .
Langkah 2.4.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.4.2
Tambahkan dan .
Langkah 2.5
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5.3
Ganti semua kemunculan dengan .
Langkah 2.6
Pindahkan ke sebelah kiri .
Langkah 2.7
Turunan dari terhadap adalah .
Langkah 2.8
Kalikan dengan .
Langkah 2.9
Naikkan menjadi pangkat .
Langkah 2.10
Naikkan menjadi pangkat .
Langkah 2.11
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.12
Tambahkan dan .
Langkah 2.13
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.13.1
Terapkan sifat distributif.
Langkah 2.13.2
Kalikan dengan .
Langkah 2.13.3
Susun kembali suku-suku.
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 5.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Tulis kembali sebagai .
Langkah 5.2.2.2
Tarik suku-suku keluar dari bawah akar, dengan asumsi bilangan-bilangan riil.
Langkah 5.2.3
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 5.2.4
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.4.1
Nilai eksak dari adalah .
Langkah 5.2.5
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 5.2.6
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.6.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.2.6.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.6.2.1
Gabungkan dan .
Langkah 5.2.6.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.2.6.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.6.3.1
Kalikan dengan .
Langkah 5.2.6.3.2
Kurangi dengan .
Langkah 5.2.7
Penyelesaian untuk persamaan .
Langkah 6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Atur sama dengan .
Langkah 6.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 6.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Nilai eksak dari adalah .
Langkah 6.2.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 6.2.4
Kurangi dengan .
Langkah 6.2.5
Penyelesaian untuk persamaan .
Langkah 7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Nilai eksak dari adalah .
Langkah 9.1.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.3
Kalikan dengan .
Langkah 9.1.4
Nilai eksak dari adalah .
Langkah 9.1.5
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.6
Kalikan dengan .
Langkah 9.1.7
Nilai eksak dari adalah .
Langkah 9.1.8
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.9
Kalikan dengan .
Langkah 9.2
Tambahkan dan .
Langkah 10
Karena setidaknya ada satu titik di atau turunan kedua yang tidak terdefinisikan, lakukan uji turunan pertama.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 10.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.1
Evaluasi .
Langkah 10.2.2.2
Naikkan menjadi pangkat .
Langkah 10.2.2.3
Kalikan dengan .
Langkah 10.2.2.4
Evaluasi .
Langkah 10.2.2.5
Kalikan dengan .
Langkah 10.2.2.6
Jawaban akhirnya adalah .
Langkah 10.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.1
Evaluasi .
Langkah 10.3.2.2
Naikkan menjadi pangkat .
Langkah 10.3.2.3
Kalikan dengan .
Langkah 10.3.2.4
Evaluasi .
Langkah 10.3.2.5
Kalikan dengan .
Langkah 10.3.2.6
Jawaban akhirnya adalah .
Langkah 10.4
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.1
Evaluasi .
Langkah 10.4.2.2
Naikkan menjadi pangkat .
Langkah 10.4.2.3
Kalikan dengan .
Langkah 10.4.2.4
Evaluasi .
Langkah 10.4.2.5
Kalikan dengan .
Langkah 10.4.2.6
Jawaban akhirnya adalah .
Langkah 10.5
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.5.2.1
Evaluasi .
Langkah 10.5.2.2
Naikkan menjadi pangkat .
Langkah 10.5.2.3
Kalikan dengan .
Langkah 10.5.2.4
Evaluasi .
Langkah 10.5.2.5
Kalikan dengan .
Langkah 10.5.2.6
Jawaban akhirnya adalah .
Langkah 10.6
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.6.2.1
Evaluasi .
Langkah 10.6.2.2
Naikkan menjadi pangkat .
Langkah 10.6.2.3
Kalikan dengan .
Langkah 10.6.2.4
Evaluasi .
Langkah 10.6.2.5
Kalikan dengan .
Langkah 10.6.2.6
Jawaban akhirnya adalah .
Langkah 10.7
Karena turunan pertamanya tidak mengubah tanda-tanda di sekitar , ini bukan merupakan maksimum atau minimum lokal.
Bukan maksimum atau minimum lokal
Langkah 10.8
Karena turunan pertamanya diubah tandanya dari negatif menjadi positif di sekitar , maka adalah minimum lokal.
adalah minimum lokal
Langkah 10.9
Karena turunan pertamanya diubah tandanya dari positif menjadi negatif di sekitar , maka adalah maksimum lokal.
adalah maksimum lokal
Langkah 10.10
Karena turunan pertamanya tidak mengubah tanda-tanda di sekitar , ini bukan merupakan maksimum atau minimum lokal.
Bukan maksimum atau minimum lokal
Langkah 10.11
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
adalah maksimum lokal
adalah minimum lokal
adalah maksimum lokal
Langkah 11