Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.2.4
Gabungkan dan .
Langkah 1.2.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.2.6
Sederhanakan pembilangnya.
Langkah 1.2.6.1
Kalikan dengan .
Langkah 1.2.6.2
Kurangi dengan .
Langkah 1.2.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.2.8
Gabungkan dan .
Langkah 1.2.9
Gabungkan dan .
Langkah 1.2.10
Kalikan dengan .
Langkah 1.2.11
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.2.12
Faktorkan dari .
Langkah 1.2.13
Batalkan faktor persekutuan.
Langkah 1.2.13.1
Faktorkan dari .
Langkah 1.2.13.2
Batalkan faktor persekutuan.
Langkah 1.2.13.3
Tulis kembali pernyataannya.
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Tulis kembali sebagai .
Langkah 2.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3.3
Ganti semua kemunculan dengan .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Kalikan eksponen dalam .
Langkah 2.3.5.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.5.2
Gabungkan dan .
Langkah 2.3.5.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3.6
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.3.7
Gabungkan dan .
Langkah 2.3.8
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.3.9
Sederhanakan pembilangnya.
Langkah 2.3.9.1
Kalikan dengan .
Langkah 2.3.9.2
Kurangi dengan .
Langkah 2.3.10
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3.11
Gabungkan dan .
Langkah 2.3.12
Gabungkan dan .
Langkah 2.3.13
Kalikan dengan dengan menambahkan eksponennya.
Langkah 2.3.13.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.13.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.3.13.3
Kurangi dengan .
Langkah 2.3.13.4
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3.14
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.3.15
Kalikan dengan .
Langkah 2.3.16
Gabungkan dan .
Langkah 2.3.17
Pindahkan tanda negatif di depan pecahan.
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.1.2.4
Gabungkan dan .
Langkah 4.1.2.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.1.2.6
Sederhanakan pembilangnya.
Langkah 4.1.2.6.1
Kalikan dengan .
Langkah 4.1.2.6.2
Kurangi dengan .
Langkah 4.1.2.7
Pindahkan tanda negatif di depan pecahan.
Langkah 4.1.2.8
Gabungkan dan .
Langkah 4.1.2.9
Gabungkan dan .
Langkah 4.1.2.10
Kalikan dengan .
Langkah 4.1.2.11
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 4.1.2.12
Faktorkan dari .
Langkah 4.1.2.13
Batalkan faktor persekutuan.
Langkah 4.1.2.13.1
Faktorkan dari .
Langkah 4.1.2.13.2
Batalkan faktor persekutuan.
Langkah 4.1.2.13.3
Tulis kembali pernyataannya.
Langkah 4.1.3
Evaluasi .
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.3
Kalikan dengan .
Langkah 4.1.4
Susun kembali suku-suku.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Langkah 5.2.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 5.2.2
KPK dari satu dan pernyataan apa pun adalah pernyataan itu sendiri.
Langkah 5.3
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Langkah 5.3.1
Kalikan setiap suku dalam dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Langkah 5.3.2.1
Sederhanakan setiap suku.
Langkah 5.3.2.1.1
Kalikan dengan dengan menambahkan eksponennya.
Langkah 5.3.2.1.1.1
Pindahkan .
Langkah 5.3.2.1.1.2
Kalikan dengan .
Langkah 5.3.2.1.1.2.1
Naikkan menjadi pangkat .
Langkah 5.3.2.1.1.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.3.2.1.1.3
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 5.3.2.1.1.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.3.2.1.1.5
Tambahkan dan .
Langkah 5.3.2.1.2
Batalkan faktor persekutuan dari .
Langkah 5.3.2.1.2.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2.2
Tulis kembali pernyataannya.
Langkah 5.3.3
Sederhanakan sisi kanannya.
Langkah 5.3.3.1
Kalikan dengan .
Langkah 5.4
Selesaikan persamaan.
Langkah 5.4.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.4.2
Pangkatkan setiap sisi persamaan dengan pangkat untuk menghilangkan eksponen pecahan di sisi kiri.
Langkah 5.4.3
Sederhanakan sisi kirinya.
Langkah 5.4.3.1
Sederhanakan .
Langkah 5.4.3.1.1
Terapkan kaidah hasil kali ke .
Langkah 5.4.3.1.2
Kalikan eksponen dalam .
Langkah 5.4.3.1.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 5.4.3.1.2.2
Batalkan faktor persekutuan dari .
Langkah 5.4.3.1.2.2.1
Batalkan faktor persekutuan.
Langkah 5.4.3.1.2.2.2
Tulis kembali pernyataannya.
Langkah 5.4.3.1.2.3
Batalkan faktor persekutuan dari .
Langkah 5.4.3.1.2.3.1
Batalkan faktor persekutuan.
Langkah 5.4.3.1.2.3.2
Tulis kembali pernyataannya.
Langkah 5.4.3.1.3
Sederhanakan.
Langkah 5.4.3.1.4
Susun kembali faktor-faktor dalam .
Langkah 5.4.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5.4.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 5.4.4.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.4.4.2.1
Bagilah setiap suku di dengan .
Langkah 5.4.4.2.2
Sederhanakan sisi kirinya.
Langkah 5.4.4.2.2.1
Batalkan faktor persekutuan.
Langkah 5.4.4.2.2.2
Bagilah dengan .
Langkah 5.4.4.3
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 5.4.4.4
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.4.4.4.1
Bagilah setiap suku di dengan .
Langkah 5.4.4.4.2
Sederhanakan sisi kirinya.
Langkah 5.4.4.4.2.1
Batalkan faktor persekutuan.
Langkah 5.4.4.4.2.2
Bagilah dengan .
Langkah 5.4.4.4.3
Sederhanakan sisi kanannya.
Langkah 5.4.4.4.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 5.4.4.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5.5
Meniadakan penyelesaian yang tidak membuat benar.
Langkah 6
Langkah 6.1
Ubah persamaan dengan eksponen pecahan menjadi akar.
Langkah 6.1.1
Gunakan rumus untuk menulis kembali eksponensiasi ke dalam bentuk akar.
Langkah 6.1.2
Apa pun yang dipangkatkan ke sama dengan bilangan pokok itu sendiri.
Langkah 6.2
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.3
Selesaikan .
Langkah 6.3.1
Untuk menghilangkan akar pada sisi kiri persamaan, pangkatkan tiga kedua sisi persamaan.
Langkah 6.3.2
Sederhanakan setiap sisi persamaan tersebut.
Langkah 6.3.2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 6.3.2.2
Sederhanakan sisi kirinya.
Langkah 6.3.2.2.1
Sederhanakan .
Langkah 6.3.2.2.1.1
Kalikan eksponen dalam .
Langkah 6.3.2.2.1.1.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 6.3.2.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 6.3.2.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 6.3.2.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 6.3.2.2.1.2
Sederhanakan.
Langkah 6.3.2.3
Sederhanakan sisi kanannya.
Langkah 6.3.2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan pernyataannya.
Langkah 9.1.1
Tulis kembali sebagai .
Langkah 9.1.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 9.2
Batalkan faktor persekutuan dari .
Langkah 9.2.1
Batalkan faktor persekutuan.
Langkah 9.2.2
Tulis kembali pernyataannya.
Langkah 9.3
Sederhanakan pernyataannya.
Langkah 9.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.3.2
Kalikan dengan .
Langkah 9.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 9.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Langkah 10
Langkah 10.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 10.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 10.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2.2
Sederhanakan hasilnya.
Langkah 10.2.2.1
Kalikan dengan .
Langkah 10.2.2.2
Jawaban akhirnya adalah .
Langkah 10.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Langkah 10.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.3.2
Sederhanakan hasilnya.
Langkah 10.3.2.1
Kalikan dengan .
Langkah 10.3.2.2
Jawaban akhirnya adalah .
Langkah 10.4
Karena turunan pertamanya diubah tandanya dari positif menjadi negatif di sekitar , maka adalah maksimum lokal.
adalah maksimum lokal
adalah maksimum lokal
Langkah 11