Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=3x- log alami dari x
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Turunan dari terhadap adalah .
Langkah 1.4
Susun kembali suku-suku.
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.2
Tulis kembali sebagai .
Langkah 2.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.5
Kalikan dengan .
Langkah 2.2.6
Kalikan dengan .
Langkah 2.2.7
Kalikan dengan .
Langkah 2.2.8
Tambahkan dan .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.4.2
Tambahkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Turunan dari terhadap adalah .
Langkah 4.1.4
Susun kembali suku-suku.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.3
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 5.3.2
KPK dari satu dan pernyataan apa pun adalah pernyataan itu sendiri.
Langkah 5.4
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Kalikan setiap suku dalam dengan .
Langkah 5.4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 5.4.2.1.2
Batalkan faktor persekutuan.
Langkah 5.4.2.1.3
Tulis kembali pernyataannya.
Langkah 5.5
Selesaikan persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 5.5.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.1
Bagilah setiap suku di dengan .
Langkah 5.5.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.5.2.2.1.2
Bagilah dengan .
Langkah 5.5.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.3.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Terapkan kaidah hasil kali ke .
Langkah 9.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.3
Naikkan menjadi pangkat .
Langkah 9.2
Kalikan pembilang dengan balikan dari penyebut.
Langkah 9.3
Kalikan dengan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1.1
Batalkan faktor persekutuan.
Langkah 11.2.1.2
Tulis kembali pernyataannya.
Langkah 11.2.2
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13