Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.2.2
Turunan dari terhadap adalah .
Langkah 1.3.2.3
Ganti semua kemunculan dengan .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Kalikan dengan .
Langkah 1.3.6
Gabungkan dan .
Langkah 1.3.7
Batalkan faktor persekutuan dari .
Langkah 1.3.7.1
Batalkan faktor persekutuan.
Langkah 1.3.7.2
Tulis kembali pernyataannya.
Langkah 1.3.8
Gabungkan dan .
Langkah 1.4
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Tulis kembali sebagai .
Langkah 2.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.4
Kalikan dengan .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Sederhanakan.
Langkah 2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.4.2
Gabungkan suku-sukunya.
Langkah 2.4.2.1
Gabungkan dan .
Langkah 2.4.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 2.4.2.3
Tambahkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.3
Evaluasi .
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.1.3.2.2
Turunan dari terhadap adalah .
Langkah 4.1.3.2.3
Ganti semua kemunculan dengan .
Langkah 4.1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.5
Kalikan dengan .
Langkah 4.1.3.6
Gabungkan dan .
Langkah 4.1.3.7
Batalkan faktor persekutuan dari .
Langkah 4.1.3.7.1
Batalkan faktor persekutuan.
Langkah 4.1.3.7.2
Tulis kembali pernyataannya.
Langkah 4.1.3.8
Gabungkan dan .
Langkah 4.1.4
Susun kembali suku-suku.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Tambahkan ke kedua sisi persamaan.
Langkah 5.3
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Langkah 5.3.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 5.3.2
KPK dari satu dan pernyataan apa pun adalah pernyataan itu sendiri.
Langkah 5.4
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Langkah 5.4.1
Kalikan setiap suku dalam dengan .
Langkah 5.4.2
Sederhanakan sisi kirinya.
Langkah 5.4.2.1
Batalkan faktor persekutuan dari .
Langkah 5.4.2.1.1
Batalkan faktor persekutuan.
Langkah 5.4.2.1.2
Tulis kembali pernyataannya.
Langkah 5.5
Selesaikan persamaan.
Langkah 5.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 5.5.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.5.2.1
Bagilah setiap suku di dengan .
Langkah 5.5.2.2
Sederhanakan sisi kirinya.
Langkah 5.5.2.2.1
Batalkan faktor persekutuan dari .
Langkah 5.5.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.5.2.2.1.2
Bagilah dengan .
Langkah 5.5.2.3
Sederhanakan sisi kanannya.
Langkah 5.5.2.3.1
Bagilah dengan .
Langkah 6
Langkah 6.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Naikkan menjadi pangkat .
Langkah 9.2
Hapus faktor persekutuan dari dan .
Langkah 9.2.1
Faktorkan dari .
Langkah 9.2.2
Batalkan faktor persekutuan.
Langkah 9.2.2.1
Faktorkan dari .
Langkah 9.2.2.2
Batalkan faktor persekutuan.
Langkah 9.2.2.3
Tulis kembali pernyataannya.
Langkah 10
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Sederhanakan setiap suku.
Langkah 11.2.1.1
Kalikan dengan .
Langkah 11.2.1.2
Kalikan dengan .
Langkah 11.2.1.3
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 11.2.1.4
Naikkan menjadi pangkat .
Langkah 11.2.2
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah maksimum lokal
Langkah 13