Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=-2000x^-2+1/5
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Tambahkan dan .
Langkah 1.4.2
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.4.3
Gabungkan dan .
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Tulis kembali sebagai .
Langkah 2.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.2.2
Kalikan dengan .
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Kalikan dengan .
Langkah 2.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.5.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.1
Gabungkan dan .
Langkah 2.5.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Karena tidak ada nilai dari yang membuat turunan pertama sama dengan , maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 5
Tidak Ada Ekstrem Lokal
Langkah 6