Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.1.3
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Sederhanakan setiap suku.
Langkah 1.1.2.3.1.1
Nilai eksak dari adalah .
Langkah 1.1.2.3.1.2
Kalikan dengan .
Langkah 1.1.2.3.2
Kurangi dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 1.1.3.2
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 1.1.3.3
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 1.1.3.3.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.4
Sederhanakan jawabannya.
Langkah 1.1.3.4.1
Nilai eksak dari adalah .
Langkah 1.1.3.4.2
Kalikan dengan .
Langkah 1.1.3.4.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.5
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Evaluasi .
Langkah 1.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4.2
Turunan dari terhadap adalah .
Langkah 1.3.4.3
Kalikan dengan .
Langkah 1.3.4.4
Kalikan dengan .
Langkah 1.3.5
Tambahkan dan .
Langkah 1.3.6
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.7
Turunan dari terhadap adalah .
Langkah 1.3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.9
Kalikan dengan .
Langkah 2
Langkah 2.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 2.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 2.1.2
Evaluasi limit dari pembilangnya.
Langkah 2.1.2.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.3
Nilai eksak dari adalah .
Langkah 2.1.3
Evaluasi limit dari penyebutnya.
Langkah 2.1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.1.3.2
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 2.1.3.3
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.1.3.4
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 2.1.3.5
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 2.1.3.6
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 2.1.3.6.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.6.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.6.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.7
Sederhanakan jawabannya.
Langkah 2.1.3.7.1
Sederhanakan setiap suku.
Langkah 2.1.3.7.1.1
Nilai eksak dari adalah .
Langkah 2.1.3.7.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.1.3.7.1.3
Kalikan dengan .
Langkah 2.1.3.7.1.4
Nilai eksak dari adalah .
Langkah 2.1.3.7.2
Tambahkan dan .
Langkah 2.1.3.7.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.3.8
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 2.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 2.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 2.3.2
Turunan dari terhadap adalah .
Langkah 2.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.3.4
Evaluasi .
Langkah 2.3.4.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.4.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.4.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.4.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.4.2.3
Ganti semua kemunculan dengan .
Langkah 2.3.4.3
Turunan dari terhadap adalah .
Langkah 2.3.4.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.4.5
Naikkan menjadi pangkat .
Langkah 2.3.4.6
Naikkan menjadi pangkat .
Langkah 2.3.4.7
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.4.8
Tambahkan dan .
Langkah 2.3.4.9
Kalikan dengan .
Langkah 2.3.5
Turunan dari terhadap adalah .
Langkah 2.3.6
Sederhanakan.
Langkah 2.3.6.1
Tambahkan dan .
Langkah 2.3.6.2
Susun kembali suku-suku.
Langkah 2.3.6.3
Sederhanakan setiap suku.
Langkah 2.3.6.3.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 2.3.6.3.2
Terapkan kaidah hasil kali ke .
Langkah 2.3.6.3.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.3.6.3.4
Kalikan .
Langkah 2.3.6.3.4.1
Gabungkan dan .
Langkah 2.3.6.3.4.2
Gabungkan dan .
Langkah 2.3.6.3.5
Pindahkan ke sebelah kiri .
Langkah 2.3.6.3.6
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 2.3.6.3.7
Gabungkan.
Langkah 2.3.6.3.8
Kalikan dengan dengan menambahkan eksponennya.
Langkah 2.3.6.3.8.1
Kalikan dengan .
Langkah 2.3.6.3.8.1.1
Naikkan menjadi pangkat .
Langkah 2.3.6.3.8.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.6.3.8.2
Tambahkan dan .
Langkah 2.3.6.3.9
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 2.3.6.3.10
Terapkan kaidah hasil kali ke .
Langkah 2.3.6.3.11
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.3.6.3.12
Gabungkan dan .
Langkah 2.4
Gabungkan suku-sukunya.
Langkah 2.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.4.2
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Langkah 2.4.2.1
Kalikan dengan .
Langkah 2.4.2.2
Kalikan dengan dengan menambahkan eksponennya.
Langkah 2.4.2.2.1
Kalikan dengan .
Langkah 2.4.2.2.1.1
Naikkan menjadi pangkat .
Langkah 2.4.2.2.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.4.2.2.2
Tambahkan dan .
Langkah 2.4.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3
Langkah 3.1
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 3.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 3.3
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 3.4
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 3.5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3.6
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 3.7
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 3.8
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3.9
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 3.10
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 3.11
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 4
Langkah 4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.4
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.5
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5
Langkah 5.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 5.2
Nilai eksak dari adalah .
Langkah 5.3
Kalikan dengan .
Langkah 5.4
Sederhanakan pembilangnya.
Langkah 5.4.1
Nilai eksak dari adalah .
Langkah 5.4.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 5.5
Sederhanakan penyebutnya.
Langkah 5.5.1
Kalikan dengan .
Langkah 5.5.2
Nilai eksak dari adalah .
Langkah 5.5.3
Kalikan dengan .
Langkah 5.5.4
Nilai eksak dari adalah .
Langkah 5.5.5
Kalikan dengan .
Langkah 5.5.6
Tambahkan dan .
Langkah 6
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: