Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati pi/2 dari (cos(3x))/(1+cos(2x))
Langkah 1
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1.1
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.2.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.3.1
Gabungkan dan .
Langkah 1.1.2.3.2
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama.
Langkah 1.1.2.3.3
Nilai eksak dari adalah .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.1.3
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.3.1.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.3.1.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.3.1.1.1
Batalkan faktor persekutuan.
Langkah 1.1.3.3.1.1.2
Tulis kembali pernyataannya.
Langkah 1.1.3.3.1.2
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena kosinus negatif di kuadran kedua.
Langkah 1.1.3.3.1.3
Nilai eksak dari adalah .
Langkah 1.1.3.3.1.4
Kalikan dengan .
Langkah 1.1.3.3.2
Kurangi dengan .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.2.2
Turunan dari terhadap adalah .
Langkah 1.3.2.3
Ganti semua kemunculan dengan .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Kalikan dengan .
Langkah 1.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.6
Kalikan dengan .
Langkah 1.3.7
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.9.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.9.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.9.1.2
Turunan dari terhadap adalah .
Langkah 1.3.9.1.3
Ganti semua kemunculan dengan .
Langkah 1.3.9.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.9.4
Kalikan dengan .
Langkah 1.3.9.5
Kalikan dengan .
Langkah 1.3.10
Kurangi dengan .
Langkah 2
Karena fungsi mendekati dari kiri dan dari kanan, limitnya tidak ada.