Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.1.2.1.2
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena tangen negatif di kuadran kedua.
Langkah 1.1.2.3.2
Nilai eksak dari adalah .
Langkah 1.1.2.3.3
Kalikan dengan .
Langkah 1.1.2.3.4
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Evaluasi limitnya.
Langkah 1.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.1.3
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Langkah 1.1.3.3.1
Sederhanakan setiap suku.
Langkah 1.1.3.3.1.1
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena sekan negatif di kuadran kedua.
Langkah 1.1.3.3.1.2
Nilai eksak dari adalah .
Langkah 1.1.3.3.1.3
Kalikan dengan .
Langkah 1.1.3.3.2
Kurangi dengan .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.2.3
Ganti semua kemunculan dengan .
Langkah 1.3.3
Turunan dari terhadap adalah .
Langkah 1.3.4
Susun kembali faktor-faktor dari .
Langkah 1.3.5
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.7
Turunan dari terhadap adalah .
Langkah 1.3.8
Tambahkan dan .
Langkah 1.4
Kurangi.
Langkah 1.4.1
Hapus faktor persekutuan dari dan .
Langkah 1.4.1.1
Faktorkan dari .
Langkah 1.4.1.2
Batalkan faktor persekutuan.
Langkah 1.4.1.2.1
Faktorkan dari .
Langkah 1.4.1.2.2
Batalkan faktor persekutuan.
Langkah 1.4.1.2.3
Tulis kembali pernyataannya.
Langkah 1.4.2
Batalkan faktor persekutuan dari .
Langkah 1.4.2.1
Batalkan faktor persekutuan.
Langkah 1.4.2.2
Bagilah dengan .
Langkah 2
Langkah 2.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.2
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Langkah 4.1
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena sekan negatif di kuadran kedua.
Langkah 4.2
Nilai eksak dari adalah .
Langkah 4.3
Kalikan .
Langkah 4.3.1
Kalikan dengan .
Langkah 4.3.2
Kalikan dengan .