Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Kalikan dengan .
Langkah 1.1.2.3.2
Kurangi dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.3
Pindahkan limit ke dalam logaritma.
Langkah 1.1.3.4
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 1.1.3.4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.5
Sederhanakan jawabannya.
Langkah 1.1.3.5.1
Sederhanakan setiap suku.
Langkah 1.1.3.5.1.1
Kalikan dengan .
Langkah 1.1.3.5.1.2
Log alami dari adalah .
Langkah 1.1.3.5.1.3
Kalikan dengan .
Langkah 1.1.3.5.2
Kurangi dengan .
Langkah 1.1.3.5.3
Tambahkan dan .
Langkah 1.1.3.5.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.6
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.5
Tambahkan dan .
Langkah 1.3.6
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9
Evaluasi .
Langkah 1.3.9.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9.2
Turunan dari terhadap adalah .
Langkah 1.3.10
Sederhanakan.
Langkah 1.3.10.1
Tambahkan dan .
Langkah 1.3.10.2
Susun kembali suku-suku.
Langkah 1.4
Gabungkan suku-sukunya.
Langkah 1.4.1
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 1.4.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2
Karena fungsi mendekati dari kiri dan dari kanan, limitnya tidak ada.