Kalkulus Contoh

Evaluasi Menggunakan Aturan L'Hospital limit ketika x mendekati 0 dari (xcos(3x))/(sin(5x))
Langkah 1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 1.2.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.2.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.2.4
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.5
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.1
Kalikan dengan .
Langkah 1.2.5.2
Nilai eksak dari adalah .
Langkah 1.2.5.3
Kalikan dengan .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.3.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Kalikan dengan .
Langkah 1.3.3.2
Nilai eksak dari adalah .
Langkah 1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.2
Turunan dari terhadap adalah .
Langkah 3.3.3
Ganti semua kemunculan dengan .
Langkah 3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5
Kalikan dengan .
Langkah 3.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.7
Kalikan dengan .
Langkah 3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.9
Kalikan dengan .
Langkah 3.10
Susun kembali suku-suku.
Langkah 3.11
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.11.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.11.2
Turunan dari terhadap adalah .
Langkah 3.11.3
Ganti semua kemunculan dengan .
Langkah 3.12
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.13
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.14
Kalikan dengan .
Langkah 3.15
Pindahkan ke sebelah kiri .
Langkah 3.16
Kalikan dengan .
Langkah 4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 6
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 7
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 8
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 9
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 10
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 11
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 12
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 13
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 14
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 15
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 15.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 15.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 15.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 15.4
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 16
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 16.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 16.1.1
Kalikan dengan .
Langkah 16.1.2
Kalikan dengan .
Langkah 16.1.3
Nilai eksak dari adalah .
Langkah 16.1.4
Kalikan dengan .
Langkah 16.1.5
Kalikan dengan .
Langkah 16.1.6
Nilai eksak dari adalah .
Langkah 16.1.7
Tambahkan dan .
Langkah 16.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 16.2.1
Kalikan dengan .
Langkah 16.2.2
Nilai eksak dari adalah .
Langkah 16.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 16.3.1
Batalkan faktor persekutuan.
Langkah 16.3.2
Tulis kembali pernyataannya.
Langkah 16.4
Kalikan dengan .