Kalkulus Contoh

Cari Turunan 2nd f(x)=x^5 log alami dari x
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Turunan dari terhadap adalah .
Langkah 1.3
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Gabungkan dan .
Langkah 1.3.2
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Faktorkan dari .
Langkah 1.3.2.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.2.1
Naikkan menjadi pangkat .
Langkah 1.3.2.2.2
Faktorkan dari .
Langkah 1.3.2.2.3
Batalkan faktor persekutuan.
Langkah 1.3.2.2.4
Tulis kembali pernyataannya.
Langkah 1.3.2.2.5
Bagilah dengan .
Langkah 1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.4
Susun kembali suku-suku.
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.3
Turunan dari terhadap adalah .
Langkah 2.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.5
Gabungkan dan .
Langkah 2.2.6
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.6.1
Faktorkan dari .
Langkah 2.2.6.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.6.2.1
Naikkan menjadi pangkat .
Langkah 2.2.6.2.2
Faktorkan dari .
Langkah 2.2.6.2.3
Batalkan faktor persekutuan.
Langkah 2.2.6.2.4
Tulis kembali pernyataannya.
Langkah 2.2.6.2.5
Bagilah dengan .
Langkah 2.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Terapkan sifat distributif.
Langkah 2.3.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Kalikan dengan .
Langkah 2.3.2.2
Tambahkan dan .
Langkah 2.3.3
Susun kembali suku-suku.
Langkah 3
Tentukan turunan ketiganya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.3.3
Turunan dari terhadap adalah .
Langkah 3.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.5
Gabungkan dan .
Langkah 3.3.6
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.6.1
Faktorkan dari .
Langkah 3.3.6.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.6.2.1
Naikkan menjadi pangkat .
Langkah 3.3.6.2.2
Faktorkan dari .
Langkah 3.3.6.2.3
Batalkan faktor persekutuan.
Langkah 3.3.6.2.4
Tulis kembali pernyataannya.
Langkah 3.3.6.2.5
Bagilah dengan .
Langkah 3.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Terapkan sifat distributif.
Langkah 3.4.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.2.1
Kalikan dengan .
Langkah 3.4.2.2
Tambahkan dan .
Langkah 3.4.3
Susun kembali suku-suku.
Langkah 4
Cari turunan keempat.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.2.3
Kalikan dengan .
Langkah 4.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.3.3
Turunan dari terhadap adalah .
Langkah 4.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.3.5
Gabungkan dan .
Langkah 4.3.6
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.6.1
Faktorkan dari .
Langkah 4.3.6.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.6.2.1
Naikkan menjadi pangkat .
Langkah 4.3.6.2.2
Faktorkan dari .
Langkah 4.3.6.2.3
Batalkan faktor persekutuan.
Langkah 4.3.6.2.4
Tulis kembali pernyataannya.
Langkah 4.3.6.2.5
Bagilah dengan .
Langkah 4.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Terapkan sifat distributif.
Langkah 4.4.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.2.1
Kalikan dengan .
Langkah 4.4.2.2
Tambahkan dan .
Langkah 4.4.3
Susun kembali suku-suku.
Langkah 5
Turunan keempat dari terhadap adalah .