Kalkulus Contoh

Cari Turunan 2nd f(x)=3x^3(x^2-4)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Tambahkan dan .
Langkah 1.4
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Pindahkan .
Langkah 1.4.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.1
Naikkan menjadi pangkat .
Langkah 1.4.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.4.3
Tambahkan dan .
Langkah 1.5
Pindahkan ke sebelah kiri .
Langkah 1.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.7
Pindahkan ke sebelah kiri .
Langkah 1.8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.8.1
Terapkan sifat distributif.
Langkah 1.8.2
Terapkan sifat distributif.
Langkah 1.8.3
Terapkan sifat distributif.
Langkah 1.8.4
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.8.4.1
Kalikan dengan .
Langkah 1.8.4.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.8.4.2.1
Pindahkan .
Langkah 1.8.4.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.8.4.2.3
Tambahkan dan .
Langkah 1.8.4.3
Kalikan dengan .
Langkah 1.8.4.4
Kalikan dengan .
Langkah 1.8.4.5
Kalikan dengan .
Langkah 1.8.4.6
Tambahkan dan .
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 3
Tentukan turunan ketiganya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Kalikan dengan .
Langkah 4
Cari turunan keempat.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.2.3
Kalikan dengan .
Langkah 4.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.2
Tambahkan dan .
Langkah 5
Turunan keempat dari terhadap adalah .