Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Turunan dari terhadap adalah .
Langkah 1.3
Turunan dari terhadap adalah .
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.1.3
Ganti semua kemunculan dengan .
Langkah 2.3.2
Turunan dari terhadap adalah .
Langkah 2.3.3
Naikkan menjadi pangkat .
Langkah 2.3.4
Naikkan menjadi pangkat .
Langkah 2.3.5
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.6
Tambahkan dan .
Langkah 2.4
Sederhanakan.
Langkah 2.4.1
Susun kembali suku-suku.
Langkah 2.4.2
Sederhanakan setiap suku.
Langkah 2.4.2.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 2.4.2.2
Terapkan kaidah hasil kali ke .
Langkah 2.4.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.4.2.4
Gabungkan dan .
Langkah 2.4.2.5
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 2.4.2.6
Gabungkan.
Langkah 2.4.2.7
Kalikan dengan dengan menambahkan eksponennya.
Langkah 2.4.2.7.1
Kalikan dengan .
Langkah 2.4.2.7.1.1
Naikkan menjadi pangkat .
Langkah 2.4.2.7.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.4.2.7.2
Tambahkan dan .
Langkah 2.4.3
Sederhanakan setiap suku.
Langkah 2.4.3.1
Faktorkan dari .
Langkah 2.4.3.2
Pisahkan pecahan.
Langkah 2.4.3.3
Konversikan dari ke .
Langkah 2.4.3.4
Kalikan dengan .
Langkah 2.4.3.5
Pisahkan pecahan.
Langkah 2.4.3.6
Konversikan dari ke .
Langkah 2.4.3.7
Bagilah dengan .
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.3
Turunan dari terhadap adalah .
Langkah 3.2.4
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.4.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.4.3
Ganti semua kemunculan dengan .
Langkah 3.2.5
Turunan dari terhadap adalah .
Langkah 3.2.6
Kalikan dengan dengan menambahkan eksponennya.
Langkah 3.2.6.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.2.6.2
Tambahkan dan .
Langkah 3.2.7
Naikkan menjadi pangkat .
Langkah 3.2.8
Naikkan menjadi pangkat .
Langkah 3.2.9
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.2.10
Tambahkan dan .
Langkah 3.2.11
Naikkan menjadi pangkat .
Langkah 3.2.12
Naikkan menjadi pangkat .
Langkah 3.2.13
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.2.14
Tambahkan dan .
Langkah 3.3
Evaluasi .
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Turunan dari terhadap adalah .
Langkah 3.3.3
Kalikan dengan .
Langkah 3.3.4
Kalikan dengan .
Langkah 3.4
Sederhanakan.
Langkah 3.4.1
Terapkan sifat distributif.
Langkah 3.4.2
Kalikan dengan .
Langkah 3.4.3
Susun kembali suku-suku.
Langkah 3.4.4
Sederhanakan setiap suku.
Langkah 3.4.4.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 3.4.4.2
Terapkan kaidah hasil kali ke .
Langkah 3.4.4.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 3.4.4.4
Gabungkan dan .
Langkah 3.4.4.5
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 3.4.4.6
Terapkan kaidah hasil kali ke .
Langkah 3.4.4.7
Gabungkan.
Langkah 3.4.4.8
Kalikan dengan dengan menambahkan eksponennya.
Langkah 3.4.4.8.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.4.4.8.2
Tambahkan dan .
Langkah 3.4.4.9
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 3.4.4.10
Terapkan kaidah hasil kali ke .
Langkah 3.4.4.11
Satu dipangkat berapa pun sama dengan satu.
Langkah 3.4.4.12
Gabungkan dan .
Langkah 3.4.5
Sederhanakan setiap suku.
Langkah 3.4.5.1
Kalikan dengan .
Langkah 3.4.5.2
Faktorkan dari .
Langkah 3.4.5.3
Pisahkan pecahan.
Langkah 3.4.5.4
Konversikan dari ke .
Langkah 3.4.5.5
Kalikan dengan .
Langkah 3.4.5.6
Kalikan dengan .
Langkah 3.4.5.7
Pisahkan pecahan.
Langkah 3.4.5.8
Konversikan dari ke .
Langkah 3.4.5.9
Bagilah dengan .
Langkah 3.4.5.10
Kalikan dengan .
Langkah 3.4.5.11
Pisahkan pecahan.
Langkah 3.4.5.12
Konversikan dari ke .
Langkah 3.4.5.13
Bagilah dengan .
Langkah 4
Langkah 4.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.2
Evaluasi .
Langkah 4.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.2.3.3
Ganti semua kemunculan dengan .
Langkah 4.2.4
Turunan dari terhadap adalah .
Langkah 4.2.5
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.2.5.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.2.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.2.5.3
Ganti semua kemunculan dengan .
Langkah 4.2.6
Turunan dari terhadap adalah .
Langkah 4.2.7
Kalikan dengan dengan menambahkan eksponennya.
Langkah 4.2.7.1
Pindahkan .
Langkah 4.2.7.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.2.7.3
Tambahkan dan .
Langkah 4.2.8
Pindahkan ke sebelah kiri .
Langkah 4.2.9
Naikkan menjadi pangkat .
Langkah 4.2.10
Naikkan menjadi pangkat .
Langkah 4.2.11
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.2.12
Tambahkan dan .
Langkah 4.2.13
Kalikan dengan dengan menambahkan eksponennya.
Langkah 4.2.13.1
Pindahkan .
Langkah 4.2.13.2
Kalikan dengan .
Langkah 4.2.13.2.1
Naikkan menjadi pangkat .
Langkah 4.2.13.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.2.13.3
Tambahkan dan .
Langkah 4.2.14
Pindahkan ke sebelah kiri .
Langkah 4.3
Evaluasi .
Langkah 4.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.3.2.3
Ganti semua kemunculan dengan .
Langkah 4.3.3
Turunan dari terhadap adalah .
Langkah 4.3.4
Naikkan menjadi pangkat .
Langkah 4.3.5
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.3.6
Tambahkan dan .
Langkah 4.3.7
Kalikan dengan .
Langkah 4.4
Turunan dari terhadap adalah .
Langkah 4.5
Sederhanakan.
Langkah 4.5.1
Terapkan sifat distributif.
Langkah 4.5.2
Gabungkan suku-sukunya.
Langkah 4.5.2.1
Kalikan dengan .
Langkah 4.5.2.2
Kalikan dengan .
Langkah 4.5.2.3
Tambahkan dan .
Langkah 4.5.3
Sederhanakan setiap suku.
Langkah 4.5.3.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 4.5.3.2
Terapkan kaidah hasil kali ke .
Langkah 4.5.3.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.5.3.4
Gabungkan dan .
Langkah 4.5.3.5
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 4.5.3.6
Gabungkan.
Langkah 4.5.3.7
Kalikan dengan dengan menambahkan eksponennya.
Langkah 4.5.3.7.1
Kalikan dengan .
Langkah 4.5.3.7.1.1
Naikkan menjadi pangkat .
Langkah 4.5.3.7.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.5.3.7.2
Tambahkan dan .
Langkah 4.5.3.8
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 4.5.3.9
Terapkan kaidah hasil kali ke .
Langkah 4.5.3.10
Gabungkan dan .
Langkah 4.5.3.11
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 4.5.3.12
Terapkan kaidah hasil kali ke .
Langkah 4.5.3.13
Gabungkan.
Langkah 4.5.3.14
Kalikan dengan dengan menambahkan eksponennya.
Langkah 4.5.3.14.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.5.3.14.2
Tambahkan dan .
Langkah 4.5.3.15
Sederhanakan pembilangnya.
Langkah 4.5.3.15.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.5.3.15.2
Kalikan dengan .
Langkah 4.5.4
Sederhanakan setiap suku.
Langkah 4.5.4.1
Faktorkan dari .
Langkah 4.5.4.2
Pisahkan pecahan.
Langkah 4.5.4.3
Konversikan dari ke .
Langkah 4.5.4.4
Kalikan dengan .
Langkah 4.5.4.5
Pisahkan pecahan.
Langkah 4.5.4.6
Konversikan dari ke .
Langkah 4.5.4.7
Bagilah dengan .
Langkah 4.5.4.8
Kalikan dengan .
Langkah 4.5.4.9
Faktorkan dari .
Langkah 4.5.4.10
Pisahkan pecahan.
Langkah 4.5.4.11
Konversikan dari ke .
Langkah 4.5.4.12
Kalikan dengan .
Langkah 4.5.4.13
Kalikan dengan .
Langkah 4.5.4.14
Pisahkan pecahan.
Langkah 4.5.4.15
Konversikan dari ke .
Langkah 4.5.4.16
Bagilah dengan .