Kalkulus Contoh

Evaluasi Integralnya integral dari -8 ke 1 dari 1/(x^(1/3)) terhadap x
Langkah 1
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 1.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.2.2
Gabungkan dan .
Langkah 1.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 3
Substitusikan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Evaluasi pada dan pada .
Langkah 3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 3.2.2
Kalikan dengan .
Langkah 3.2.3
Tulis kembali sebagai .
Langkah 3.2.4
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.2.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.5.1
Batalkan faktor persekutuan.
Langkah 3.2.5.2
Tulis kembali pernyataannya.
Langkah 3.2.6
Naikkan menjadi pangkat .
Langkah 3.2.7
Kalikan dengan .
Langkah 3.2.8
Gabungkan dan .
Langkah 3.2.9
Kalikan dengan .
Langkah 3.2.10
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.10.1
Faktorkan dari .
Langkah 3.2.10.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.10.2.1
Faktorkan dari .
Langkah 3.2.10.2.2
Batalkan faktor persekutuan.
Langkah 3.2.10.2.3
Tulis kembali pernyataannya.
Langkah 3.2.10.2.4
Bagilah dengan .
Langkah 3.2.11
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.2.12
Gabungkan dan .
Langkah 3.2.13
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.2.14
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.14.1
Kalikan dengan .
Langkah 3.2.14.2
Kurangi dengan .
Langkah 3.2.15
Pindahkan tanda negatif di depan pecahan.
Langkah 4
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal:
Bentuk Bilangan Campuran:
Langkah 5