Kalkulus Contoh

Cari dy/dx y=(1-x)/x
Langkah 1
Diferensialkan kedua sisi persamaan tersebut.
Langkah 2
Turunan dari terhadap adalah .
Langkah 3
Diferensialkan sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 3.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.3
Tambahkan dan .
Langkah 3.2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.6.1
Kalikan dengan .
Langkah 3.2.6.2
Pindahkan ke sebelah kiri .
Langkah 3.2.6.3
Tulis kembali sebagai .
Langkah 3.2.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.8
Kalikan dengan .
Langkah 3.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Terapkan sifat distributif.
Langkah 3.3.2
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.1
Kalikan dengan .
Langkah 3.3.2.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.2.1
Kalikan dengan .
Langkah 3.3.2.1.2.2
Kalikan dengan .
Langkah 3.3.2.2
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.2.1
Tambahkan dan .
Langkah 3.3.2.2.2
Kurangi dengan .
Langkah 3.3.3
Pindahkan tanda negatif di depan pecahan.
Langkah 4
Membentuk ulang persamaan dengan mengatur sisi kiri sama dengan sisi kanan.
Langkah 5
Ganti dengan .