Kalkulus Contoh

Selesaikan Persamaan Diferensial (x-y^3+y^2sin(x))dx-(3xy^2+2ycos(x))dy=0
Langkah 1
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4.3
Pindahkan ke sebelah kiri .
Langkah 1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Kurangi dengan .
Langkah 1.5.2
Susun kembali suku-suku.
Langkah 2
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.5
Kalikan dengan .
Langkah 2.2.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Turunan dari terhadap adalah .
Langkah 2.4
Kalikan dengan .
Langkah 2.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Terapkan sifat distributif.
Langkah 2.5.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.1
Kalikan dengan .
Langkah 2.5.2.2
Kalikan dengan .
Langkah 3
Periksa bahwa .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Integralkan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.2
Bagi integral tunggal menjadi beberapa integral.
Langkah 5.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 5.5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.6
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 5.7
Sederhanakan.
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.6
Turunan dari terhadap adalah .
Langkah 8.3.7
Kalikan dengan .
Langkah 8.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.5.1
Terapkan sifat distributif.
Langkah 8.5.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 8.5.2.1
Kalikan dengan .
Langkah 8.5.2.2
Kalikan dengan .
Langkah 8.5.3
Susun kembali suku-suku.
Langkah 9
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Tambahkan ke kedua sisi persamaan.
Langkah 9.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.3
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.3.1
Tambahkan dan .
Langkah 9.1.3.2
Tambahkan dan .
Langkah 9.1.3.3
Kurangi dengan .
Langkah 9.1.3.4
Tambahkan dan .
Langkah 10
Temukan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 11
Substitusikan dalam .
Langkah 12
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 12.1.1
Terapkan sifat distributif.
Langkah 12.1.2
Gabungkan dan .
Langkah 12.2
Susun kembali faktor-faktor dalam .