Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dx)=(x+y)/x : y(1)=1
:
Langkah 1
Tulis kembali persamaan diferensial sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tulis kembali persamaan tersebut sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Pisahkan pecahan menjadi dua pecahan.
Langkah 1.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2
Faktorkan dari .
Langkah 1.3
Susun kembali dan .
Langkah 2
Faktor integrasi didefinisikan dengan rumus , di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat integralnya.
Langkah 2.2
Integralkan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.2
Integral dari terhadap adalah .
Langkah 2.2.3
Sederhanakan.
Langkah 2.3
Hapus konstanta dari integral.
Langkah 2.4
Gunakan kaidah pangkat logaritma.
Langkah 2.5
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 2.6
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 3
Kalikan setiap suku dengan faktor integrasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kalikan setiap suku dengan .
Langkah 3.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Gabungkan dan .
Langkah 3.2.2
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 3.2.3
Gabungkan dan .
Langkah 3.2.4
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.4.1
Kalikan dengan .
Langkah 3.2.4.2
Naikkan menjadi pangkat .
Langkah 3.2.4.3
Naikkan menjadi pangkat .
Langkah 3.2.4.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.2.4.5
Tambahkan dan .
Langkah 3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Batalkan faktor persekutuan.
Langkah 3.3.2
Tulis kembali pernyataannya.
Langkah 3.4
Kalikan dengan .
Langkah 4
Tulis kembali sisi kiri sebagai hasil dari diferensiasi perkalian.
Langkah 5
Tulis integral untuk kedua ruas.
Langkah 6
Integralkan sisi kiri.
Langkah 7
Integral dari terhadap adalah .
Langkah 8
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Gabungkan dan .
Langkah 8.2
Kalikan kedua ruas dengan .
Langkah 8.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1.1.1
Batalkan faktor persekutuan.
Langkah 8.3.1.1.2
Tulis kembali pernyataannya.
Langkah 8.3.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.2.1.1
Terapkan sifat distributif.
Langkah 8.3.2.1.2
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.2.1.2.1
Susun kembali faktor-faktor dalam .
Langkah 8.3.2.1.2.2
Susun kembali dan .
Langkah 9
Gunakan kondisi sarat untuk menemukan nilai dengan mensubstitusikan untuk dan untuk padda .
Langkah 10
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Tulis kembali persamaan tersebut sebagai .
Langkah 10.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1.1
Kalikan dengan .
Langkah 10.2.1.2
Kalikan dengan .
Langkah 10.2.1.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 10.2.1.4
Log alami dari adalah .
Langkah 10.2.2
Tambahkan dan .
Langkah 11
Substitusikan untuk dalam dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Substitusikan untuk .
Langkah 11.2
Kalikan dengan .