Kalkulus Contoh

Evaluasi Integralnya integral dari (e^(3x)-2)^2 terhadap x
Langkah 1
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tulis kembali sebagai .
Langkah 1.2
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Terapkan sifat distributif.
Langkah 1.2.2
Terapkan sifat distributif.
Langkah 1.2.3
Terapkan sifat distributif.
Langkah 1.3
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.3.1.1.2
Tambahkan dan .
Langkah 1.3.1.2
Pindahkan ke sebelah kiri .
Langkah 1.3.1.3
Kalikan dengan .
Langkah 1.3.2
Kurangi dengan .
Langkah 2
Bagi integral tunggal menjadi beberapa integral.
Langkah 3
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Diferensialkan .
Langkah 3.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.1.4
Kalikan dengan .
Langkah 3.2
Tulis kembali soalnya menggunakan dan .
Langkah 4
Gabungkan dan .
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Integral dari terhadap adalah .
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1.1
Diferensialkan .
Langkah 8.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.1.4
Kalikan dengan .
Langkah 8.2
Tulis kembali soalnya menggunakan dan .
Langkah 9
Gabungkan dan .
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Gabungkan dan .
Langkah 11.2
Pindahkan tanda negatif di depan pecahan.
Langkah 12
Integral dari terhadap adalah .
Langkah 13
Terapkan aturan konstanta.
Langkah 14
Sederhanakan.
Langkah 15
Substitusikan kembali untuk setiap variabel substitusi pengintegralan.
Ketuk untuk lebih banyak langkah...
Langkah 15.1
Ganti semua kemunculan dengan .
Langkah 15.2
Ganti semua kemunculan dengan .