Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4
Gabungkan suku-sukunya.
Langkah 1.4.1
Tambahkan dan .
Langkah 1.4.2
Tambahkan dan .
Langkah 2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.4
Gabungkan suku-sukunya.
Langkah 4.1.4.1
Tambahkan dan .
Langkah 4.1.4.2
Tambahkan dan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 5.3
Sederhanakan .
Langkah 5.3.1
Tulis kembali sebagai .
Langkah 5.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 5.3.3
Tambah atau kurang adalah .
Langkah 6
Titik kritis untuk dievaluasi.
Langkah 7
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 8
Karena uji turunan pertama tidak berhasil, maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 9