Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tulis kembali sebagai .
Langkah 1.2
Perluas dengan memindahkan ke luar logaritma.
Langkah 2
Langkah 2.1
Pindahkan limit ke dalam eksponen.
Langkah 2.2
Gabungkan dan .
Langkah 3
Langkah 3.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 3.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 3.1.2
Ketika log mendekati tak hingga, nilainya menjadi .
Langkah 3.1.3
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 3.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 3.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 3.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.2.2
Turunan dari terhadap adalah .
Langkah 3.3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.3.4
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.6
Sederhanakan.
Langkah 3.3.6.1
Susun kembali faktor-faktor dari .
Langkah 3.3.6.2
Kalikan dengan .
Langkah 3.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 3.5
Kalikan dengan .
Langkah 4
Langkah 4.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 4.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 4.1.2
Evaluasi limit dari pembilangnya.
Langkah 4.1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 4.1.2.2
Karena eksponen mendekati , jumlah mendekati .
Langkah 4.1.2.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 4.1.2.4
Tak hingga ditambah atau dikurangi sebuah bilangan hasilnya tak hingga.
Langkah 4.1.3
Evaluasi limit dari penyebutnya.
Langkah 4.1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 4.1.3.2
Karena eksponen mendekati , jumlah mendekati .
Langkah 4.1.3.3
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 4.1.3.4
Tak hingga ditambah tak hingga hasilnya tak hingga.
Langkah 4.1.3.5
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 4.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 4.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 4.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 4.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 4.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 4.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.5
Tambahkan dan .
Langkah 4.3.6
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.3.7
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 4.3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5
Langkah 5.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 5.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 5.1.2
Karena eksponen mendekati , jumlah mendekati .
Langkah 5.1.3
Evaluasi limit dari penyebutnya.
Langkah 5.1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 5.1.3.2
Karena eksponen mendekati , jumlah mendekati .
Langkah 5.1.3.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 5.1.3.4
Tak hingga ditambah atau dikurangi sebuah bilangan hasilnya tak hingga.
Langkah 5.1.3.5
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 5.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 5.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 5.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 5.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 5.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.3.4
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.3.6
Tambahkan dan .
Langkah 5.4
Batalkan faktor persekutuan dari .
Langkah 5.4.1
Batalkan faktor persekutuan.
Langkah 5.4.2
Tulis kembali pernyataannya.
Langkah 6
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 7
Sederhanakan.
Langkah 8
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: