Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Sederhanakan penjelasan limitnya.
Langkah 1.1.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.1.2
Gabungkan suku-sukunya.
Langkah 1.1.2.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.1.2.2
Gabungkan dan .
Langkah 1.1.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.2.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.1.2.5
Gabungkan dan .
Langkah 1.1.2.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.2
Sederhanakan penjelasan limitnya.
Langkah 1.2.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 1.2.2
Kalikan dengan .
Langkah 1.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2
Langkah 2.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 2.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 2.1.2
Evaluasi limit dari pembilangnya.
Langkah 2.1.2.1
Evaluasi limitnya.
Langkah 2.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.1.2.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.1.2.1.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.3
Sederhanakan jawabannya.
Langkah 2.1.2.3.1
Batalkan faktor persekutuan dari .
Langkah 2.1.2.3.1.1
Faktorkan dari .
Langkah 2.1.2.3.1.2
Batalkan faktor persekutuan.
Langkah 2.1.2.3.1.3
Tulis kembali pernyataannya.
Langkah 2.1.2.3.2
Kurangi dengan .
Langkah 2.1.3
Evaluasi limit dari penyebutnya.
Langkah 2.1.3.1
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 2.1.3.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.1.3.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.1.3.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.1.3.5
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 2.1.3.5.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.5.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.6
Sederhanakan jawabannya.
Langkah 2.1.3.6.1
Sederhanakan setiap suku.
Langkah 2.1.3.6.1.1
Batalkan faktor persekutuan dari .
Langkah 2.1.3.6.1.1.1
Batalkan faktor persekutuan.
Langkah 2.1.3.6.1.1.2
Tulis kembali pernyataannya.
Langkah 2.1.3.6.1.2
Kalikan dengan .
Langkah 2.1.3.6.2
Kurangi dengan .
Langkah 2.1.3.6.3
Kalikan dengan .
Langkah 2.1.3.6.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.3.7
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 2.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 2.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 2.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.4
Evaluasi .
Langkah 2.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.4.3
Kalikan dengan .
Langkah 2.3.5
Kurangi dengan .
Langkah 2.3.6
Pindahkan ke sebelah kiri .
Langkah 2.3.7
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.8
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.10
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.11
Kalikan dengan .
Langkah 2.3.12
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.13
Tambahkan dan .
Langkah 2.3.14
Pindahkan ke sebelah kiri .
Langkah 2.3.15
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.16
Kalikan dengan .
Langkah 2.3.17
Tambahkan dan .
Langkah 3
Langkah 3.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 3.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 3.4
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 3.5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3.6
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 4
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5
Langkah 5.1
Kalikan dengan .
Langkah 5.2
Sederhanakan penyebutnya.
Langkah 5.2.1
Batalkan faktor persekutuan dari .
Langkah 5.2.1.1
Faktorkan dari .
Langkah 5.2.1.2
Batalkan faktor persekutuan.
Langkah 5.2.1.3
Tulis kembali pernyataannya.
Langkah 5.2.2
Kalikan dengan .
Langkah 5.2.3
Kurangi dengan .
Langkah 5.3
Batalkan faktor persekutuan dari .
Langkah 5.3.1
Batalkan faktor persekutuan.
Langkah 5.3.2
Tulis kembali pernyataannya.
Langkah 5.4
Kalikan dengan .